2021-01-07 Reinforce learning概念

强化学习初印象

agent(智能体)在environment中学习,根据环境的状态state,执行动作action,并根据环境的反馈奖励reward

RL包含:两部分:agent、environment  ;三要素:state/observation、actiom、reward

监督学习(任务驱动型):输入x,输出y     用在分类(分辨)、回归问题(预测)

                 基于一个分类任务或回归任务给训练样本去训练

非监督学习(数据驱动型):输入一批x,分辨两个x不一样

                 寻找数据内的关系与区别

强化学习(环境驱动型):输入的x是环境的状态,输出的是action和环境交互

                 算法适配环境

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值