强化学习初印象
agent(智能体)在environment中学习,根据环境的状态state,执行动作action,并根据环境的反馈奖励reward
RL包含:两部分:agent、environment ;三要素:state/observation、actiom、reward
监督学习(任务驱动型):输入x,输出y 用在分类(分辨)、回归问题(预测)
基于一个分类任务或回归任务给训练样本去训练
非监督学习(数据驱动型):输入一批x,分辨两个x不一样
寻找数据内的关系与区别
强化学习(环境驱动型):输入的x是环境的状态,输出的是action和环境交互
算法适配环境
<