PSO-GRU多变量回归预测:优化隐含层单元数量和初始学习率

本文提出了一种基于粒子群优化(PSO)的门控循环单元(GRU)多变量回归预测方法,通过Matlab实现。方法中,PSO用于优化GRU的隐含层单元数量和初始学习率,以提升预测精度。实验验证了该方法的有效性。
摘要由CSDN通过智能技术生成

PSO-GRU多变量回归预测,粒子群优化门控循环单元(Matlab)

所有程序经过验证,保证有效运行。
1.data为数据集,输入7个特征,输出一个变量。
2.PSO_GRU.m为程序主文件,fitness为函数文件无需运行。
3.命令窗口输出R2、MAE和RMSE。
4.粒子群优化门控循环单元,优化隐含层单元数量和初始学习率。
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上.

PSO-GRU多变量回归预测:优化隐含层单元数量和初始学习率

摘要:

本文将介绍一种基于粒子群优化算法的门控循环单元(PSO-GRU)多变量回归预测方法。该方法使用粒子群优化算法对门控循环单元的隐含层单元数量和初始学习率进行优化,以提高多变量回归预测的精度。我们在Matlab环境下实现了该方法,并通过实验验证了其有效性。

一、介绍

多变量回归预测是机器学习中的一个重要问题,它旨在通过多个输入变量预测一个输出变量。传统的机器学习方法,如线性回归、支持向量机等,在处理复杂的多变量回

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值