PSO-GRU多变量回归预测,粒子群优化门控循环单元(Matlab)
所有程序经过验证,保证有效运行。
1.data为数据集,输入7个特征,输出一个变量。
2.PSO_GRU.m为程序主文件,fitness为函数文件无需运行。
3.命令窗口输出R2、MAE和RMSE。
4.粒子群优化门控循环单元,优化隐含层单元数量和初始学习率。
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上.
PSO-GRU多变量回归预测:优化隐含层单元数量和初始学习率
摘要:
本文将介绍一种基于粒子群优化算法的门控循环单元(PSO-GRU)多变量回归预测方法。该方法使用粒子群优化算法对门控循环单元的隐含层单元数量和初始学习率进行优化,以提高多变量回归预测的精度。我们在Matlab环境下实现了该方法,并通过实验验证了其有效性。
一、介绍
多变量回归预测是机器学习中的一个重要问题,它旨在通过多个输入变量预测一个输出变量。传统的机器学习方法,如线性回归、支持向量机等,在处理复杂的多变量回