HDU4565-So easy-数学推导化简递推矩阵快速幂

原创 2016年04月07日 20:30:08

So Easy!

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3517    Accepted Submission(s): 1136


Problem Description
  A sequence Sn is defined as:

Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
  You, a top coder, say: So easy! 
 

Input
  There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.
 

Output
  For each the case, output an integer Sn.
 

Sample Input
2 3 1 2013 2 3 2 2013 2 2 1 2013
 

Sample Output
4 14 4
 
题意:就是求出题中给出的数的值。




代码如下:
#include<bits/stdc++.h>
using namespace std;
long long a,b,n,m;
struct mat {
    long long a[2][2];
};
mat mul(mat x,mat y) {
    mat tt;
    for(int i=0;i<=1;i++)
        for(int j=0;j<=1;j++) {
            tt.a[i][j]=0;
            for(int k=0;k<=1;k++)
                tt.a[i][j]+=x.a[i][k]*y.a[k][j];
            tt.a[i][j]%=m;
        }
    return tt;
}
int main()
{
    while(scanf("%I64d%I64d%I64d%I64d",&a,&b,&n,&m)!=EOF) {
        long long f0=2;long long f1=2*a;
        if(n==0) {
            printf("%lld\n",f0);
            continue;
        }
        if(n==1) {
            printf("%lld\n",f1);
            continue;
        }
        mat base,ans;
        ans.a[0][0]=ans.a[1][1]=1;
        ans.a[1][0]=ans.a[0][1]=0;
        base.a[0][0]=((2*a)%m+m)%m;
        base.a[0][1]=((b-a*a)%m+m)%m;
        base.a[1][0]=1;
        base.a[1][1]=0;
        long long x=n-1;
       // cout << x << endl;
        while(x) {
            if(x&1) {
                ans=mul(ans,base);
            }
            base=mul(base,base);
            x/=2;
        }
        long long tot=(ans.a[0][0]*f1+ans.a[0][1]*f0)%m;
        printf("%lld\n",tot);
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lyc1635566ty/article/details/51088976

矩阵快速幂 ——(递推表达式)

矩阵快速幂    首先知道矩阵       矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合;      矩阵乘法: 定义:设A为    的矩阵,B为    的矩阵,那么称    的矩阵...
  • WR_technology
  • WR_technology
  • 2016-05-06 19:44:01
  • 1561

卡尔曼滤波推导过程

卡尔曼滤波在机器人定位,SLAM等方面需要用到,公式自己推一遍能更加深入理解。这个是基于线性系统的基本公式,实际应用中需要把非线性系统通过泰勒公式求导展开近似线性化。     总...
  • xcq2000
  • xcq2000
  • 2013-09-05 13:42:25
  • 1206

矩阵快速幂的应用——优化递推过程

矩阵快速幂可用来优化递推矩阵快速幂的实现及一些详细介绍可以参考我的另一篇文章: 数论常用内容——矩阵快速幂首先,需要先构造合适的初始状态(第一个矩阵)然后,利用此矩阵和矩阵乘法的性质,使用快速幂的手...
  • tick_tock97
  • tick_tock97
  • 2017-05-03 11:10:29
  • 227

洛谷 P1939 【模板】矩阵加速(数列):优化递推式的方法——矩阵快速幂

在大多数情况下,O(n)的效率都是值得骄傲的,然而,有时候并不是,比如如何在一秒钟内算出一个递推式的第1e9项,很明显O(n)不行了。 然而常数级又不太现实,除非你的数学非常好,这题又比较简单,你推了...
  • qq_37666409
  • qq_37666409
  • 2017-12-15 19:49:08
  • 144

NYOJ 301 递推求值(矩阵快速幂)

递推求值 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的...
  • LYHVOYAGE
  • LYHVOYAGE
  • 2014-04-04 12:25:44
  • 3276

hdu-5868 Different Circle Permutation 矩阵快速幂 + 欧拉函数 + polya计数定理

题意: 给n个点,构成一个环,每个点可染黑或白色,要求染色方案中任意两个相邻的点不能都为黑色,问在旋转同构意义下的染色方案数。 解析: 设f(n)为不考虑旋转同构时n个点的方案数(其实不考虑旋转同...
  • viphong
  • viphong
  • 2016-09-15 02:10:38
  • 1086

hdu-2842(矩阵快速幂+推导)

问题描述: Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on...
  • wust_cyl
  • wust_cyl
  • 2017-08-28 19:14:55
  • 155

poj 2748 Logs Stacking 递推公式的循环节

题意: 求f(n)=f(n-1)+2*f(n-2)+3*f(n-3)...(n-1)*f(1)+f(0),f(0)=f(1)=1的值。 分析: 转换为f(n)=3*f(n-1)-f(n-2)的二...
  • sepNINE
  • sepNINE
  • 2015-11-06 10:51:18
  • 909

矩阵快速幂+高斯消元解递推方程-HDU6185

http://acm.hdu.edu.cn/showproblem.php?pid=6185题目描述Bob’s school has a big playground, boys and girls ...
  • d12155214552
  • d12155214552
  • 2017-08-31 19:16:07
  • 923

蓝桥杯:递推求值(快速幂,矩阵快速幂)

快速幂就是快速计算m^n “快”主要体现在它把复杂度从一般循环计算的o(n)级别降低到了o(logn)级别。 一般情况下,m^n=m*m*m*…*m,实现就是用一般的循环计算来实现。 而快速幂的...
  • nay_nix2
  • nay_nix2
  • 2017-05-23 17:08:01
  • 194
收藏助手
不良信息举报
您举报文章:HDU4565-So easy-数学推导化简递推矩阵快速幂
举报原因:
原因补充:

(最多只允许输入30个字)