离散数学-8 函数

本文详细介绍了离散数学中函数的定义,包括函数的性质、满射、单射和双射的定义及其关系。通过一系列定义和定理,探讨了函数的复合、反函数以及双射函数在集合等势中的作用。还讨论了函数的基数和有穷集、无穷集的性质,阐述了如何判断集合间的关系和基数比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.1 函数的定义与性质

定义8.1 F 为二元关系, xdomF 都存在唯一yranF 使 xFy 成立, 则称 F 函数 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y F x .

定义8.2 F, G 为函数,

 F=G FGGF

如果两个函数F G 相等, 一定满足下面两个条件:

(1) domF=domG

(2) xdomF=domG 都有F(x)=G(x)

定义8.3 A, B为集合, 如果

f 为函数, domf=A, ranfB,

则称 f AB的函数, 记作 fAB.

定义8.4 所有从AB的函数的集合记作BA, 符号化表示为

BA = { f | fAB }

|A|=m, |B|=n, m, n>0, |BA|=nm

A=, BA=B={ }

AB=, BA=A=

定义8.5 设函数 fAB, A1A, B1B

(1) A1 f 下的像 f(A1) = { f(x) | xA1}, 函数的像 f(A)= { f(x) | xA}

(2) B1 f 下的完全原像 f 1(B1)={ x|xAf(x)B1}

定义8.6 fAB,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值