python计算机视觉KNN算法、稠密Dense-sift

本文详细介绍了KNN算法的基本原理,包括距离计算、近邻选择和分类过程,同时讨论了其优缺点。接着,文章探讨了Dense-SIFT的概念,一种改进的SIFT特征提取方法,以及在实际应用中的疑惑。此外,提供了KNN算法的代码示例,并展示了不同参数设置下的实验结果,最后通过稠密SIFT的可视化来辅助理解。
摘要由CSDN通过智能技术生成

KNN算法原理:

在这里插入图片描述
KNN算法是分类方法中最简单且应用最多的一种方法。,这种算法把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。

计算步骤:
1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类

距离或相似度的衡量
什么是合适的距离衡量?距离越近应该意味着这两个点属于一个分类的可能性越大。
觉的距离衡量包括欧式距离、夹角余弦等。
对于文本分类来说,使用余弦(cosine)来计算相似度就比欧式(Euclidean)距离更合适。

类别的判定
投票决定:少数服从多数,近邻中哪个类别的点最多就分为该类。
加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)

优缺点
1、优点
简单,易于理解,易于实现,无需估计参数,无需训练
适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型)
特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好
2、缺点
懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢
可解释性较差,无法给出决策树那样的规则。

Dense-sift(稠密SIFT)原理:

Dense-SIFT是sift的密集采样板,由于SIFT的实时性差,目前特征提取多采用密集采样(源自李菲菲的A Bayesian Hierarchical Model for Learning Natural Scene Categories),代码好理解,但是有一个疑问SPM中采用Dense-SIFT时,一个patch中的16个采样点8个方向赋值只采用该patch中的像素点进行加权,而网上有些代码则采用以16个采样点为中心的一个patch大小的区域作为基像素进行加权。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值