求二维函数Z=g(X,Y)型,用卷积公式求概率密度,积分区域如何确定(中)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/lynn0085/article/details/79426872

因为关于二维随机变量主题内容重要,难度大,例题多,最主要是积分区间的确定是难点,同时关联卷积概念,卷积公式容易,积分区间难以确定,因为书上的例题都没有详细解释积分区间如何确定,所以分成上中下三篇博客写。
接本主题(上)。

求二维函数Z=g(X,Y)型,用卷积公式求概率密度,积分区域如何确定(中)

 ####  =======

【例二】

设二维随机变量(X,Y)的概率密度为

f(x,y)={ 2xy,0<x<1,0<y<1, 0,others

(1)求P{X>2Y}
(2)求Z=X+Y的密度函数fz(z)

【解】

(1)求P{X>2Y}

一般的解法:P(f(X,Y))总是通过概率分布FZ(z)得来的,而 FZ(z)又是通过概率密度积分得出来的。概率密度 fZ(z)=f(x,zx)dx
要求P{X>2Y},
设Z=X-2Y, 求P(X>2Y)就是求P(Z>0)=1FZ(z0)
先求概率密度 fZ(z)=f(x,zx)dx

如上所述,如果按照先求概率密度的方法来算一个具体的特定的概率,求概率密度再求分布函数,会比较麻烦,对于一个特定的概率,可以通过画图图解法,看看积分区域在哪里,直接求dxdy的双重积分,也许对于特定概率来说更加方便。

对本题P(X>2Y) ,直接画一个x,y的坐标图,很容易看出来X>2Y的区域在哪里,再结合题目规定的区间 0< x< 1, 0< y< 1, 很容易算出,dxdy的双重积分。
在x,y的坐标系上,直接画一条Y=12X的直线,题目要求X>2Y,那么就是Y<\frac{1}{2}X,很容易看出来区域在哪里。
这里写图片描述
图中粉红色的三角形区域就是X>2Y的区间,其中x限制在0到1,y也限制在0到1
先对Y积分,Y的积分区间就是0到直线Y=X/2;后对X积分,X的积分区间就是常量:0到1
P(X>2Y)=X>2Yf(x,y)dxdy
=01dx0x2f(x,y)dy
=01dx0x2(2xy)dy=01dx((2x)yy22)|02x
=01(x58x2)dx=(x2258x33)|01=125813=724

(2)求Z=X+Y的密度函数fz(z)

画出x-z坐标,算出两条直线范围,
Zmin=X+Ymin =X+0
Zmax=X+Ymax =X+1
加上X的0到1区间范围,就构成积分区间。如图,积分区间就是红色三角块和蓝色三角块。

这里写图片描述

fZ(z)=f(x,zx)dx
因此,积分区间按照z轴从下到上分,

当z<0, 由于z不在Zmin到Zmax的范围内,所以 fZ(z)=0

0z<1, 对x先积分,x的积分区间为红色区块,x的边界为0到Zmin直线,所以积分区间就是0到z
fZ(z)=0z(2x(zx))dx=0z(2z)dx=(2z)x|0z=(2z)z

1z<2, 对x先积分,x的积分区间为蓝色区块,x的边界为Zmax直线到1,所以积分区间就是z-1到1
fZ(z)=z11(2x(zx))dx=z11(2z)dx=(2z)x|z11=(2z)2

所以,概率密度

fZ(z)={ z(2z),0z<1 (2z)2,1z<2 0,else

####  =====

【例三】

假设一电路装有3个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为λ>0的指数分布,当3个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T的概率分布。

【解】
分布函数的物理含义:F(x)xXx)

指数分布函数的含义:F(t)=1eλtF(t)x

指数(概率密度)函数的意义:f(t)=eλtt

[分析]
关于指数分布,回顾一下博客离散型随机变量,二项分布,泊松分布,指数分布,几何分布(概统2.知识)
泊松分布是求某个时间t内,事件发生k次的概率
P{ X=k }=(λt)kk!eλt
“所谓指数分布就是求事件发生的时间间隔”
P(X=0,N(t))=(λt)00!eλt=eλt
“在t时间内出现一个以上的概率”
P{X>0,N(t)}=1eλt

指数分布,
概率密度函数为f(x)=λeλx
分布函数为F(x)=1eλx
简写 XE(λ)
参数λ为单位时间内事件发生的次数,即(电子元器件损坏的次数)。
所以电子元器件的平均寿命就是 指数分布的期望值 EX=1λ
假设某电子元器件的平均寿命为1000小时,那么EX=1000,λ=0.001,
某个电子元器件在1000小时内损坏的概率就是分布函数F(x<1000)
F(x<1000)=1eλx=11eλx
=11e0.0011000=11e

分布函数的物理含义:F(x)xXx)

指数分布函数的含义:F(t)=1eλtF(t)x

指数(概率密度)函数的意义:f(t)=eλtt
这里写图片描述

这里写图片描述

=====
回到本题,
指数分布的分布函数是
分布函数为F(x)=1eλx
xtP{X>0,N(t)}=1eλt

本题求系统正常工作的时间的概率分布,
已知一个元件正常工作的概率分布(t时间内发生故障的概率)F(t)=1eλt
系统正常工作,要求三个元件都不发生故障,F(t)是发生故障的概率,不发生故障的概率是1-F(t), 如果是三个F(t)相乘,等于三个同时发生故障的概率,一个都不发生故障,应该是三个(1-F(t))相乘,系统要求求三个都不发生故障的分布函数,就是1-三个(1-F(t))相乘。

所以
FT(t)=11F1(t)1F2(t)1F3(t)
=1(eλt)3 (1)

如果是三个F_{T}(t)直接相乘,得到的结果是
FT1(t)=F1(t)F2(t)F3(t)
=(1eλt)3
=13eλt+3e2λte3λt = 13eλt(1eλt)e3λt (2)
其中,(1eλt) 肯定是大于0 的,所以(2)式的整体值小于(1)式,
FT1(t) 小于 FT(t) , 而F(t)的含义是在t时间前系统发生故障的概率, 而实际上要求三个元件同时不发生故障系统才算不发生故障, 所以F(t)应该取大才对。

还有一个公式
在书上P82(2).3
设X,Y相互独立,分布函数分别为F_{X}(x)和F_{Y}(y),M=max(X.Y), N=min(X,Y),则
FM(z)=FX(z)FY(z),FN(z)=1[1FX(z)][1FY(z)]

本题中 T=min(X1, X2, X3),故 G(t)=1[1F(t)]3

【例四】

设随机变量(X,Y)在矩形区域G=((x,y)|0x2,0y1)上服从均匀分布,试求Z=XY的密度函数。

【 解 】

需要理解的是:=1

区域G的面积=x的长度乘以y的宽度=(2-0) x (1-0)=2*1=2

X和Y的均匀分布的概率密度函数 = 1=12

区域G的面积=x的长度y的宽度=(2-0)(1-0)
均匀分布的密度函数 = 1G=121=12

对于 Z=X*Y的密度函数与Z=X+Y的密度函数有所不同。
见P82.(2)

Z=X+YfZ(z)=f(x,zx)dx

Z=X/YfY/X(z)=|x|f(x,zx)dx

Z=XYfYX(z)=1|x|f(x,zx)dx

对于本题,要求Z=XY的密度函数
Z=XYfYX(z)=1|x|f(x,zx)dx
这里写图片描述

如图所示,
Zmax = X*Ymax = X*1 =X, ==> 直线边界:x=z
Zmin = X*Ymin = X*0 =0 , ==> 直线边界:z=0
X的左右边界为 0 到 2
所以积分区域就是Zmax, Zmin和X的左右边界围成的区块

对x进行积分,x的左边界为Zmax直线,即x=z,右边界为x=2垂直直线。
0z<2fXY(z)=1|x|f(x,zx)dx=z21|x|12dx
博客积分公式小节
基本积分表中有:dxx=ln|x|+C
得,

fXY(z)={12(ln2lnz),0z<20,else

参考书目:

张天德,叶宏 《星火燎原·概率论与数理统计辅导及习题精解》(浙大·第4版)第三章

展开阅读全文

没有更多推荐了,返回首页