求二维函数Z=g(X,Y)型,用卷积公式求概率密度,积分区域如何确定(中)

这篇博客是关于二维随机变量的概率密度计算,重点在于如何确定积分区域。作者通过举例详细阐述了如何利用卷积公式解决概率密度问题,包括求解P{X>2Y}的概率和Z=X+Y的概率密度函数。文章指出,对于特定概率,通过图解法确定积分区域可能更为直观和便捷,并提供了具体的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为关于二维随机变量主题内容重要,难度大,例题多,最主要是积分区间的确定是难点,同时关联卷积概念,卷积公式容易,积分区间难以确定,因为书上的例题都没有详细解释积分区间如何确定,所以分成上中下三篇博客写。
接本主题(上)。

求二维函数Z=g(X,Y)型,用卷积公式求概率密度,积分区域如何确定(中)

 ####  =======
【例二】

设二维随机变量(X,Y)的概率密度为

f(x,y)={ 2xy,0<x<1,0<y<1, 0,others f ( x , y ) = {   2 − x − y , 0 < x < 1 , 0 < y < 1 ,   0 , o t h e r s

(1)求P{X>2Y}
(2)求Z=X+Y的密度函数 fz(z) f z ( z )

【解】

(1)求P{X>2Y}

一般的解法:P(f(X,Y))总是通过概率分布 FZ(z) F Z ( z ) 得来的,而 FZ(z) F Z ( z ) 又是通过概率密度积分得出来的。概率密度 fZ(z)=f(x,zx)dx f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x
要求P{X>2Y},
设Z=X-2Y, 求P(X>2Y)就是求 P(Z>0)=1FZ(z0) P ( Z > 0 ) = 1 − F Z ( z ⩽ 0 )
先求概率密度 fZ(z)=f(x,zx)dx f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x

如上所述,如果按照先求概率密度的方法来算一个具体的特定的概率,求概率密度再求分布函数,会比较麻烦,对于一个特定的概率,可以通过画图图解法,看看积分区域在哪里,直接求dxdy的双重积分,也许对于特定概率来说更加方便。

对本题P(X>2Y) ,直接画一个x,y的坐标图,很容易看出来X>2Y的区域在哪里,再结合题目规定的区间 0< x< 1, 0< y< 1, 很容易算出,dxdy的双重积分。
在x,y的坐标系上,直接画一条 Y=12X Y = 1 2 X 的直线,题目要求X>2Y,那么就是Y<\frac{1}{2}X,很容易看出来区域在哪里。
这里写图片描述
图中粉红色的三角形区域就是X>2Y的区间,其中x限制在0到1,y也限制在0到1
先对Y积分,Y的积分区间就是0到直线Y=X/2;后对X积分,X的积分区间就是常量:0到1
P(X>2Y)=X>2Yf(x,y)dxdy P ( X > 2 Y ) = ∫ ∫ X > 2 Y f ( x , y ) d x d y
=10dxx20f(x,y)dy = ∫ 0 1 d x ∫ 0 x 2 f ( x , y ) d y
=10dxx20(2xy)dy=10dx((2x)yy22)|2x0 = ∫ 0 1 d x ∫ 0 x 2 ( 2 − x − y ) d y = ∫ 0 1 d x ( ( 2 − x ) y − y 2 2 ) | 0 2 x
=10(x58x2)dx=(x2258x33)|10=125813=724 = ∫ 0 1 ( x − 5 8 x 2 ) d x = ( x 2 2 − 5 8 ∗ x 3 3 ) | 0 1 = 1 2 − 5 8 ∗ 1 3 = 7 24

(2)求Z=X+Y的密度函数 fz(z) f z ( z )

画出x-z坐标,算出两条直线范围,
Zmin=X+Ymin =X+0
Zmax=X+Ymax =X+1
加上X的0到1区间范围,就构成积分区间。如图,积分区间就是红色三角块和蓝色三角块。

这里写图片描述

fZ(z)=f(x,zx)dx f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x
因此,积分区间按照z轴从下到上分,

当z<0, 由于z不在Zmin到Zmax的范围内,所以 fZ(z)=0 f Z ( z ) = 0

0z<1 0 ⩽ z < 1 , 对x先积分,x的积分区间为红色区块,x的边界为0到Zmin直线,所以积分区间就是0到z
fZ(z)=z0(2x(zx))dx=z0(2z)dx=(2z)x|z0=(2z)z f Z ( z ) = ∫ 0 z ( 2 − x − ( z − x ) ) d x = ∫ 0 z ( 2 − z ) d x = ( 2 − z ) x | 0 z = ( 2 − z ) ∗ z

1z<2 1 ⩽ z < 2 , 对x先积分,x的积分区间为蓝色区块,x的边界为Zmax直线到1,所以积分区间就是z-1到1
fZ(z)=1z1(2x(zx))dx=1z1(2z)dx=(2z)x|1z1=(2z)2 f Z ( z ) = ∫ z − 1 1 ( 2 − x − ( z − x ) ) d x = ∫ z − 1 1 ( 2 − z ) d x = ( 2 − z ) x | z − 1 1 = ( 2 − z ) 2

所以,概率密度

fZ(z)= z(2z),0z<1 (2z)2,1z<2 0,else f Z ( z ) = {   z ( 2 − z ) , 0 ⩽ z < 1   ( 2 − z ) 2 , 1 ⩽ z < 2   0 , e l s e

####  =====
【例三】

假设一电路装有3个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为 λ>0 λ > 0 的指数分布,当3个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T的概率分布。

【解】
分布函数的物理含义: F(x)xXx) F ( x ) 表 示 在 x 范 围 内 ( X ⩽ x ) 发 生 事 件 的 概 率 。

指数分布函数的含义: F(t)=1eλtF(t)x F ( t ) = 1 − e − λ t , F ( t ) 表 示 x 时 间 前 发 生 故 障 的 概 率 。

指数(概率密度)函数的意义: f(t)=eλtt f ( t ) = e − λ t , 表 示 t 时 间 内 不 发 生 故 障 的 概 率 。

[分析]
关于指数分布,回顾一下博客离散型随机变量,二项分布,泊松分布,指数分布,几何分布(概统2.知识)
泊松分布是求某个时间t内,事件发生k次的概率
P{ X=k }= (λt)kk!eλt ( λ t ) k k ! ∗ e − λ t
“所谓指数分布就是求事件发生的时间间隔”
P(X=0,N(t))=(λt)00!eλt=eλt P ( X = 0 , N ( t ) ) = ( λ t ) 0 0 ! ∗ e − λ t = e − λ t
“在t时间内出现一个以上的概率”
P{X>0,N(t)}=1eλt P { X > 0 , N ( t ) } = 1 − e − λ t

指数分布,
概率密度函数为 f(x)=λeλx f ( x ) = λ e − λ x
分布函数为 F(x)=1eλx F ( x ) = 1 − e − λ x
简写 XE(λ) X ∼ E ( λ )
参数 λ λ 为单位时间内事件发生的次数,即(电子元器件损坏的次数)。
所以电子元器件的平均寿命就是 指数分布的期望值 EX=1λ E X = 1 λ
假设某电子元器件的平均寿命为1000小时,那么 EX=1000,λ=0.001 E X = 1000 , λ = 0.001 ,
某个电子元器件在1000小时内损坏的概率就是分布函数F(x<1000)
F(x<1000)=1eλx=11eλx F ( x < 1000 ) = 1 − e − λ x = 1 − 1 e λ x
=11e0.0011000=11e = 1 − 1 e 0.001 ∗ 1000 = 1 − 1 e

分布函数的物理含义: F(x)xXx) F ( x ) 表 示 在 x 范 围 内 ( X ⩽ x ) 发 生 事 件 的 概 率 。

指数分布函数的含义: F(t)=1eλt F ( t ) = 1 − e − λ t F(t)x F ( t ) 表 示 x 时 间 前 发 生 故 障 的 概 率 。

指数(概率密度)函数的意义: f(t)=eλt f ( t ) = e − λ t t 表 示 t 时 间 内 不 发 生 故 障 的 概 率 。
这里写图片描述

这里写图片描述

=====
回到本题,
指数分布的分布函数是
分布函数为 F(x)=1eλx F ( x ) = 1 − e − λ x
xtP{X>0,N(t)}=1eλt 其 意 义 是 指 在 x 时 间 内 事 件 发 生 的 概 率 , 其 等 于 t 时 间 内 出 现 一 个 以 上 的 概 率 , 等 于 P { X > 0 , N ( t ) } = 1 − e − λ t

本题求系统正常工作的时间的概率分布,
已知一个元件正常工作的概率分布(t时间内发生故障的概率) F(t)=1eλt F ( t ) = 1 − e − λ t
系统正常工作,要求三个元件都不发生故障,F(t)是发生故障的概率,不发生故障的概率是1-F(t), 如果是三个F(t)相乘,等于三个同时发生故障的概率,一个都不发生故障,应该是三个(1-F(t))相乘,系统要求求三个都不发生故障的分布函数,就是1-三个(1-F(t))相乘。

所以
FT(t)=11F1(t)1F2(t)1F3(t) F T ( t ) = 1 − ( 1 − F 1 ( t ) ) ∗ ( 1 − F 2 ( t ) ) ∗ ( 1 − F 3 ( t ) )
=1(eλt)3 = 1 − ( e − λ t ) 3 (1)

如果是三个F_{T}(t)直接相乘,得到的结果是
FT1(t)=F1(t)F2(t)F3(t) F T 1 ( t ) = F 1 ( t ) ∗ F 2 ( t ) ∗ F 3 ( t )
=(1eλt)3 = ( 1 − e − λ t ) 3
= 13eλt+3e2λte3λt 1 − 3 e − λ t + 3 e − 2 λ t − e 3 λ t = 13eλt(1eλt)e3λt 1 − 3 e − λ t ( 1 − e − λ t ) − e 3 λ t (2)
其中, (1eλt) ( 1 − e − λ t ) 肯定是大于0 的,所以(2)式的整体值小于(1)式,
FT1(t) F T 1 ( t ) 小于 FT(t) F T ( t ) , 而F(t)的含义是在t时间前系统发生故障的概率, 而实际上要求三个元件同时不发生故障系统才算不发生故障, 所以F(t)应该取大才对。

还有一个公式
在书上 P82(2).3 P 82 ( 2 ) .3
设X,Y相互独立,分布函数分别为F_{X}(x)和F_{Y}(y),M=max(X.Y), N=min(X,Y),则
FM(z)=FX(z)FY(z),FN(z)=1[1FX(z)][1FY(z)] F M ( z ) = F X ( z ) ∗ F Y ( z ) , F N ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ]

本题中 T=min(X1, X2, X3),故 G(t)=1[1F(t)]3 G ( t ) = 1 − [ 1 − F ( t ) ] 3

【例四】

设随机变量(X,Y)在矩形区域 G=((x,y)|0x2,0y1) G = ( ( x , y ) | 0 ⩽ x ⩽ 2 , 0 ⩽ y ⩽ 1 ) 上服从均匀分布,试求Z=XY的密度函数。

【 解 】

需要理解的是: =1 二 维 随 机 变 量 均 匀 分 布 的 概 率 密 度 函 数 = 1 分 布 区 域 的 面 积

区域G的面积=x的长度乘以y的宽度=(2-0) x (1-0)=2*1=2

X和Y的均匀分布的概率密度函数 = 1=12 1 分 布 区 域 的 面 积 = 1 2

区域G的面积=x的长度y的宽度=(2-0)(1-0)
均匀分布的密度函数 = 1G=121=12 1 区 域 G 的 面 积 = 1 2 ∗ 1 = 1 2

对于 Z=X*Y的密度函数与Z=X+Y的密度函数有所不同。
见P82.(2)

Z=X+YfZ(z)=f(x,zx)dx Z = X + Y 型 的 密 度 函 数 为 , f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x

Z=X/YfY/X(z)=|x|f(x,zx)dx Z = X / Y 型 的 密 度 函 数 为 , f Y / X ( z ) = ∫ − ∞ ∞ | x | f ( x , z x ) d x

Z=XYfYX(z)=1|x|f(x,zx)dx Z = X Y 型 的 密 度 函 数 为 , f Y X ( z ) = ∫ − ∞ ∞ 1 | x | f ( x , z x ) d x

对于本题,要求Z=XY的密度函数
Z=XYfYX(z)=1|x|f(x,zx)dx Z = X Y 型 的 密 度 函 数 为 , f Y X ( z ) = ∫ − ∞ ∞ 1 | x | f ( x , z x ) d x
这里写图片描述

如图所示,
Zmax = X*Ymax = X*1 =X, ==> 直线边界:x=z
Zmin = X*Ymin = X*0 =0 , ==> 直线边界:z=0
X的左右边界为 0 到 2
所以积分区域就是Zmax, Zmin和X的左右边界围成的区块

对x进行积分,x的左边界为Zmax直线,即x=z,右边界为x=2垂直直线。
0z<2fXY(z)=1|x|f(x,zx)dx=2z1|x|12dx 0 ⩽ z < 2 时 , f X Y ( z ) = ∫ − ∞ ∞ 1 | x | f ( x , z x ) d x = ∫ z 2 1 | x | ∗ 1 2 d x
博客积分公式小节
基本积分表中有: dxx=ln|x|+C ∫ d x x = l n | x | + C
得,

fXY(z)={12(ln2lnz)0,0z<2,else f X Y ( z ) = { 1 2 ( l n 2 − l n z ) , 0 ⩽ z < 2 0 , e l s e

参考书目:

张天德,叶宏 《星火燎原·概率论与数理统计辅导及习题精解》(浙大·第4版)第三章

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值