因为关于二维随机变量主题内容重要,难度大,例题多,最主要是积分区间的确定是难点,同时关联卷积概念,卷积公式容易,积分区间难以确定,因为书上的例题都没有详细解释积分区间如何确定,所以分成上中下三篇博客写。
接本主题(上)。
求二维函数Z=g(X,Y)型,用卷积公式求概率密度,积分区域如何确定(中)
#### =======
【例二】
设二维随机变量(X,Y)的概率密度为
(1)求P{X>2Y}
(2)求Z=X+Y的密度函数 fz(z) f z ( z )
【解】
(1)求P{X>2Y}
一般的解法:P(f(X,Y))总是通过概率分布
FZ(z)
F
Z
(
z
)
得来的,而
FZ(z)
F
Z
(
z
)
又是通过概率密度积分得出来的。概率密度
fZ(z)=∫∞−∞f(x,z−x)dx
f
Z
(
z
)
=
∫
−
∞
∞
f
(
x
,
z
−
x
)
d
x
要求P{X>2Y},
设Z=X-2Y, 求P(X>2Y)就是求
P(Z>0)=1−FZ(z⩽0)
P
(
Z
>
0
)
=
1
−
F
Z
(
z
⩽
0
)
先求概率密度
fZ(z)=∫∞−∞f(x,z−x)dx
f
Z
(
z
)
=
∫
−
∞
∞
f
(
x
,
z
−
x
)
d
x
如上所述,如果按照先求概率密度的方法来算一个具体的特定的概率,求概率密度再求分布函数,会比较麻烦,对于一个特定的概率,可以通过画图图解法,看看积分区域在哪里,直接求dxdy的双重积分,也许对于特定概率来说更加方便。
对本题P(X>2Y) ,直接画一个x,y的坐标图,很容易看出来X>2Y的区域在哪里,再结合题目规定的区间 0< x< 1, 0< y< 1, 很容易算出,dxdy的双重积分。
在x,y的坐标系上,直接画一条
Y=12X
Y
=
1
2
X
的直线,题目要求X>2Y,那么就是Y<\frac{1}{2}X,很容易看出来区域在哪里。
图中粉红色的三角形区域就是X>2Y的区间,其中x限制在0到1,y也限制在0到1
先对Y积分,Y的积分区间就是0到直线Y=X/2;后对X积分,X的积分区间就是常量:0到1
P(X>2Y)=∫∫X>2Yf(x,y)dxdy
P
(
X
>
2
Y
)
=
∫
∫
X
>
2
Y
f
(
x
,
y
)
d
x
d
y
=∫10dx∫x20f(x,y)dy
=
∫
0
1
d
x
∫
0
x
2
f
(
x
,
y
)
d
y
=∫10dx∫x20(2−x−y)dy=∫10dx((2−x)y−y22)|2x0
=
∫
0
1
d
x
∫
0
x
2
(
2
−
x
−
y
)
d
y
=
∫
0
1
d
x
(
(
2
−
x
)
y
−
y
2
2
)
|
0
2
x
=∫10(x−58x2)dx=(x22−58∗x33)|10=12−58∗13=724
=
∫
0
1
(
x
−
5
8
x
2
)
d
x
=
(
x
2
2
−
5
8
∗
x
3
3
)
|
0
1
=
1
2
−
5
8
∗
1
3
=
7
24
(2)求Z=X+Y的密度函数 fz(z) f z ( z )
画出x-z坐标,算出两条直线范围,
Zmin=X+Ymin =X+0
Zmax=X+Ymax =X+1
加上X的0到1区间范围,就构成积分区间。如图,积分区间就是红色三角块和蓝色三角块。
fZ(z)=∫∞−∞f(x,z−x)dx
f
Z
(
z
)
=
∫
−
∞
∞
f
(
x
,
z
−
x
)
d
x
因此,积分区间按照z轴从下到上分,
当z<0, 由于z不在Zmin到Zmax的范围内,所以 fZ(z)=0 f Z ( z ) = 0
当
0⩽z<1
0
⩽
z
<
1
, 对x先积分,x的积分区间为红色区块,x的边界为0到Zmin直线,所以积分区间就是0到z
fZ(z)=∫z0(2−x−(z−x))dx=∫z0(2−z)dx=(2−z)x|z0=(2−z)∗z
f
Z
(
z
)
=
∫
0
z
(
2
−
x
−
(
z
−
x
)
)
d
x
=
∫
0
z
(
2
−
z
)
d
x
=
(
2
−
z
)
x
|
0
z
=
(
2
−
z
)
∗
z
当
1⩽z<2
1
⩽
z
<
2
, 对x先积分,x的积分区间为蓝色区块,x的边界为Zmax直线到1,所以积分区间就是z-1到1
fZ(z)=∫1z−1(2−x−(z−x))dx=∫1z−1(2−z)dx=(2−z)x|1z−1=(2−z)2
f
Z
(
z
)
=
∫
z
−
1
1
(
2
−
x
−
(
z
−
x
)
)
d
x
=
∫
z
−
1
1
(
2
−
z
)
d
x
=
(
2
−
z
)
x
|
z
−
1
1
=
(
2
−
z
)
2
所以,概率密度
#### =====
【例三】
假设一电路装有3个同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为 λ>0 λ > 0 的指数分布,当3个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间T的概率分布。
【解】
分布函数的物理含义:
F(x)表示在x范围内(X⩽x)发生事件的概率。
F
(
x
)
表
示
在
x
范
围
内
(
X
⩽
x
)
发
生
事
件
的
概
率
。
指数分布函数的含义: F(t)=1−e−λt,F(t)表示x时间前发生故障的概率。 F ( t ) = 1 − e − λ t , F ( t ) 表 示 x 时 间 前 发 生 故 障 的 概 率 。
指数(概率密度)函数的意义: f(t)=e−λt,表示t时间内不发生故障的概率。 f ( t ) = e − λ t , 表 示 t 时 间 内 不 发 生 故 障 的 概 率 。
[分析]
关于指数分布,回顾一下博客离散型随机变量,二项分布,泊松分布,指数分布,几何分布(概统2.知识)
泊松分布是求某个时间t内,事件发生k次的概率
P{ X=k }=
(λt)kk!∗e−λt
(
λ
t
)
k
k
!
∗
e
−
λ
t
“所谓指数分布就是求事件发生的时间间隔”
P(X=0,N(t))=(λt)00!∗e−λt=e−λt
P
(
X
=
0
,
N
(
t
)
)
=
(
λ
t
)
0
0
!
∗
e
−
λ
t
=
e
−
λ
t
“在t时间内出现一个以上的概率”
P{X>0,N(t)}=1−e−λt
P
{
X
>
0
,
N
(
t
)
}
=
1
−
e
−
λ
t
指数分布,
概率密度函数为 f(x)=λe−λx f ( x ) = λ e − λ x
分布函数为 F(x)=1−e−λx F ( x ) = 1 − e − λ x
简写 X∼E(λ) X ∼ E ( λ )
参数 λ λ 为单位时间内事件发生的次数,即(电子元器件损坏的次数)。
所以电子元器件的平均寿命就是 指数分布的期望值 EX=1λ E X = 1 λ
假设某电子元器件的平均寿命为1000小时,那么 EX=1000,λ=0.001 E X = 1000 , λ = 0.001 ,
某个电子元器件在1000小时内损坏的概率就是分布函数F(x<1000)
F(x<1000)=1−e−λx=1−1eλx F ( x < 1000 ) = 1 − e − λ x = 1 − 1 e λ x
=1−1e0.001∗1000=1−1e = 1 − 1 e 0.001 ∗ 1000 = 1 − 1 e
分布函数的物理含义: F(x)表示在x范围内(X⩽x)发生事件的概率。 F ( x ) 表 示 在 x 范 围 内 ( X ⩽ x ) 发 生 事 件 的 概 率 。
指数分布函数的含义: F(t)=1−e−λt F ( t ) = 1 − e − λ t , F(t)表示x时间前发生故障的概率。 F ( t ) 表 示 x 时 间 前 发 生 故 障 的 概 率 。
指数(概率密度)函数的意义:
f(t)=e−λt
f
(
t
)
=
e
−
λ
t
,
表示t时间内不发生故障的概率。
表
示
t
时
间
内
不
发
生
故
障
的
概
率
。
=====
回到本题,
指数分布的分布函数是
分布函数为
F(x)=1−e−λx
F
(
x
)
=
1
−
e
−
λ
x
其意义是指在x时间内事件发生的概率,其等于t时间内出现一个以上的概率,等于P{X>0,N(t)}=1−e−λt
其
意
义
是
指
在
x
时
间
内
事
件
发
生
的
概
率
,
其
等
于
t
时
间
内
出
现
一
个
以
上
的
概
率
,
等
于
P
{
X
>
0
,
N
(
t
)
}
=
1
−
e
−
λ
t
。
本题求系统正常工作的时间的概率分布,
已知一个元件正常工作的概率分布(t时间内发生故障的概率)
F(t)=1−e−λt
F
(
t
)
=
1
−
e
−
λ
t
系统正常工作,要求三个元件都不发生故障,F(t)是发生故障的概率,不发生故障的概率是1-F(t), 如果是三个F(t)相乘,等于三个同时发生故障的概率,一个都不发生故障,应该是三个(1-F(t))相乘,系统要求求三个都不发生故障的分布函数,就是1-三个(1-F(t))相乘。
所以
FT(t)=1−(1−F1(t))∗(1−F2(t))∗(1−F3(t))
F
T
(
t
)
=
1
−
(
1
−
F
1
(
t
)
)
∗
(
1
−
F
2
(
t
)
)
∗
(
1
−
F
3
(
t
)
)
=1−(e−λt)3
=
1
−
(
e
−
λ
t
)
3
(1)
如果是三个F_{T}(t)直接相乘,得到的结果是
FT1(t)=F1(t)∗F2(t)∗F3(t) F T 1 ( t ) = F 1 ( t ) ∗ F 2 ( t ) ∗ F 3 ( t )
=(1−e−λt)3 = ( 1 − e − λ t ) 3
= 1−3e−λt+3e−2λt−e3λt 1 − 3 e − λ t + 3 e − 2 λ t − e 3 λ t = 1−3e−λt(1−e−λt)−e3λt 1 − 3 e − λ t ( 1 − e − λ t ) − e 3 λ t (2)
其中, (1−e−λt) ( 1 − e − λ t ) 肯定是大于0 的,所以(2)式的整体值小于(1)式,
FT1(t) F T 1 ( t ) 小于 FT(t) F T ( t ) , 而F(t)的含义是在t时间前系统发生故障的概率, 而实际上要求三个元件同时不发生故障系统才算不发生故障, 所以F(t)应该取大才对。
还有一个公式
在书上
P82(2).3
P
82
(
2
)
.3
:
设X,Y相互独立,分布函数分别为F_{X}(x)和F_{Y}(y),M=max(X.Y), N=min(X,Y),则
FM(z)=FX(z)∗FY(z),FN(z)=1−[1−FX(z)][1−FY(z)]
F
M
(
z
)
=
F
X
(
z
)
∗
F
Y
(
z
)
,
F
N
(
z
)
=
1
−
[
1
−
F
X
(
z
)
]
[
1
−
F
Y
(
z
)
]
本题中 T=min(X1, X2, X3),故 G(t)=1−[1−F(t)]3 G ( t ) = 1 − [ 1 − F ( t ) ] 3
【例四】
设随机变量(X,Y)在矩形区域 G=((x,y)|0⩽x⩽2,0⩽y⩽1) G = ( ( x , y ) | 0 ⩽ x ⩽ 2 , 0 ⩽ y ⩽ 1 ) 上服从均匀分布,试求Z=XY的密度函数。
【 解 】
需要理解的是: 二维随机变量均匀分布的概率密度函数=1分布区域的面积 二 维 随 机 变 量 均 匀 分 布 的 概 率 密 度 函 数 = 1 分 布 区 域 的 面 积
区域G的面积=x的长度乘以y的宽度=(2-0) x (1-0)=2*1=2
X和Y的均匀分布的概率密度函数 = 1分布区域的面积=12 1 分 布 区 域 的 面 积 = 1 2
区域G的面积=x的长度y的宽度=(2-0)(1-0)
均匀分布的密度函数 =
1区域G的面积=12∗1=12
1
区
域
G
的
面
积
=
1
2
∗
1
=
1
2
对于 Z=X*Y的密度函数与Z=X+Y的密度函数有所不同。
见P82.(2)
Z=X+Y型的密度函数为,fZ(z)=∫∞−∞f(x,z−x)dx Z = X + Y 型 的 密 度 函 数 为 , f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x
Z=X/Y型的密度函数为,fY/X(z)=∫∞−∞|x|f(x,zx)dx Z = X / Y 型 的 密 度 函 数 为 , f Y / X ( z ) = ∫ − ∞ ∞ | x | f ( x , z x ) d x
Z=XY型的密度函数为,fYX(z)=∫∞−∞1|x|f(x,zx)dx Z = X Y 型 的 密 度 函 数 为 , f Y X ( z ) = ∫ − ∞ ∞ 1 | x | f ( x , z x ) d x
对于本题,要求Z=XY的密度函数
Z=XY型的密度函数为,fYX(z)=∫∞−∞1|x|f(x,zx)dx
Z
=
X
Y
型
的
密
度
函
数
为
,
f
Y
X
(
z
)
=
∫
−
∞
∞
1
|
x
|
f
(
x
,
z
x
)
d
x
如图所示,
Zmax = X*Ymax = X*1 =X, ==> 直线边界:x=z
Zmin = X*Ymin = X*0 =0 , ==> 直线边界:z=0
X的左右边界为 0 到 2
所以积分区域就是Zmax, Zmin和X的左右边界围成的区块
对x进行积分,x的左边界为Zmax直线,即x=z,右边界为x=2垂直直线。
当
0⩽z<2时,fXY(z)=∫∞−∞1|x|f(x,zx)dx=∫2z1|x|∗12dx
0
⩽
z
<
2
时
,
f
X
Y
(
z
)
=
∫
−
∞
∞
1
|
x
|
f
(
x
,
z
x
)
d
x
=
∫
z
2
1
|
x
|
∗
1
2
d
x
博客积分公式小节
基本积分表中有:
∫dxx=ln|x|+C
∫
d
x
x
=
l
n
|
x
|
+
C
得,
参考书目:
张天德,叶宏 《星火燎原·概率论与数理统计辅导及习题精解》(浙大·第4版)第三章