OR值

OR(odds ratio):又称比值比,优势比,指病例组中暴露人数与非暴露人数的比值除以对照组中暴露人数与非暴露人数的比值,在临床研究中,常用OR值表示某因素对病情的影响程度。

暴露因素病例组对照组
暴露ab
非暴露cd

OR=(病例组中暴露人数/病例组中非暴露人数)/ (对照组中暴露人数/对照组中非暴露人数)=(a/c)/(b/d) = ad/bc

OR值等于1,表示该因素对疾病的发生不起作用

OR值大于1,表示该因素是危险因素

OR值小于1,表示该因素是保护因素

危险因素表示携带此因素的的人患病的风险高;保护因素表示携带此因素的人患病的风险低

OR=1表示携带此因素的人患病率和没有携带此因素的人患病率一样,也就是说无论是否携带此因素发病率是一样的,即表示该因素对疾病的发生不起作用

举个例子:

研究心梗的病因时选择100名心梗患者作为病例组,以100名没有发现过心梗的患者作为对照组,比较他们发生心梗的可能病因。假设在发生心梗的人群中,患高血压是40人,而在没发生过心梗的人群中患高血压20人。则可得到下表:

 心梗非心梗
患高血压4020
未患高血压6080

 

 

OR=(40/60)/(20/80)=2.67

其意义可以认为是:患高血压的人发生心梗的风险是未患高血压的人发生心梗的2.67倍

参考:http://www.360doc.com/content/20/0209/10/63398540_890669145.shtml

OR(Odds Ratio)和回归系数在统计学中有不同的用途,主要用于衡量事件发生风险的增加程度。在二元逻辑回归模型中,OR通常用于分类变量的效应估计,它表示暴露于某个因素后的事件概率是非暴露者的多少倍。 回归系数(Regression Coefficient),则是线性回归分析中的重要参数,它代表自变量每变化一个单位时因变量平均变化的程度,可以是正数(正相关)、负数(负相关)或接近0(无关联)。 以下是使用Python的sklearn库来计算简单线性回归模型的回归系数的一个例子: ```python from sklearn.linear_model import LinearRegression # 假设我们有数据集data,包含特征X和目标变量y X = data[['feature1', 'feature2']] # 特征矩阵 y = data['target'] # 目标变量 # 创建并训练模型 model = LinearRegression() model.fit(X, y) # 回归系数 intercept = model.intercept_ # 截距 coefficients = pd.DataFrame(model.coef_, columns=['Coefficient'], index=X.columns) # 各特征的回归系数 print("回归系数:\n", coefficients) ``` 对于OR,在二元逻辑回归中,比如使用Logistic Regression库,我们可以直接获取结果,例如使用`statsmodels`库: ```python import statsmodels.formula.api as smf formula = "target ~ feature1 + feature2" logit_model = smf.logit(formula, data).fit() # OR可以通过exp()函数转换对数odds得到 or_values = logit_model.params / (1 - logit_model.params) print("OR:\n", or_values) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值