1、计算几何是研究什么的?
计算几何研究的问题有几种类型:
<1>子集选取。如求凸壳顶点,N个点中最邻近点,解由给定集合计算出。
<2>计算。同解析几何的计算。
<3>判定问题:如两凸壳是否相交?点是否多边形内?
2、计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?与初中数学中那些直线方程有什么差异?有什么好处?
令x1≠x2是Rn中的两点,y=θx1 +(1- θ)x2,θ∈R表达了过点x1,x2的一条直线,当θ取[0,1]之间的数时,点y从x2移动到x1,对应着x1,x2之间的线段。差异是比初中数学中那些直线方程更直观的看出了直线未知数的关系,以便之后对直线的计算。
3、凸集是什么? 直线是凸集吗?是仿射集吗?
设集合C∈R^n,x,y∈C, , 属于其中的数,令实数 a其中实数a 的取值范围在[0,1] ,那么下面的不等式是成立:ax+(1-a)y∈C;则称集合 C为凸集。直线是凸集也是仿射集。
4、三维空间中的一个平面,如何表达?
5、更高维度的“超平面”,如何表达?
6、什么是“凸函数”定义?什么是Hessen矩阵? 如何判别一个函数是凸函数?f(x)=x^3 函数是凸函数吗?
凸函数:设函数f(x)在[a,b]上有定义,若[a,b]中任意不同两点x1,x2都成立:f[(x1 x2)/2]<=[f(x1) f(x2)]/2 则称f(x)在[a,b]上是凸的。
函数图形:弧段像∩形的,比如y=-x^2的函数.
Hessen矩阵:黑塞矩阵,又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。
判别一个函数是凸函数的方法:判断函数是不是凸函数,主要看二阶导数的正负,如果二阶导数为正,那就是凹的,或者说是向下凸的;如果二阶导数为负,那就是凸的,或者说是向上凸的。f(x)=x^3 函数不是凸函数。
7、什么是“凸规划”?如何判别一个规划问题是凸规划问题。举例说明?
凸规划:
判别凸规划: