【线性代数(8)】矩阵行列式、伴随矩阵、逆矩阵


手动反爬虫: 原博地址

 知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息

如若转载,请标明出处,谢谢!

1 矩阵行列式

方阵的行列式:将矩阵中的元素拿出来,用行列式的形式表示

A = [ 2 , 2 , 2 3 , 3 , 3 1 , 1 , 1 ]      ∣ A ∣ = ∣ 2 , 2 , 2 3 , 3 , 3 1 , 1 , 1 ∣ A = \left[ \begin{matrix} 2,2,2\\3,3,3\\1,1,1 \end{matrix} \right]\space \space \space \space |A|=\begin{vmatrix} 2,2,2\\3,3,3\\1,1,1\end{vmatrix} A= 2,2,23,3,31,1,1     A= 2,2,23,3,31,1,1

如何理解这个里的矩阵行列式? 可以把矩阵当做一个类,那么就可以把行列式理解其中的一个属性,矩阵还有特征值、特征向量等等属性

方阵行列式的性质:

  • ∣ A T ∣ = ∣ A ∣ |A^{T}|=|A| AT=A
  • ∣ k A ∣ = k n ∣ A ∣ |kA| = k^{n}|A| kA=knA
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A||B| AB=A∣∣B

例题, A A A为5阶矩阵, ∣ A ∣ = 3 |A| = 3 A=3

(1) ∣ − A ∣ = ( − 1 ) 5 ∣ A ∣ = − 3 |-A| = (-1)^{5}|A| = -3 A=(1)5A=3
(2) ∣ 2 A T ∣ = ( 2 ) 5 ∣ A ∣ = ( 2 ) 5 ∗ 3 |2A^{T}|=(2)^{5}|A| = (2)^{5}*3 ∣2AT=(2)5A=(2)53
(3) ∣ ∣ A ∣ A ∣ = ∣ 3 A ∣ = 3 6 ||A|A|= |3A| = 3^{6} ∣∣AA=∣3A=36
(4) ∣ ∣ ∣ ∣ A ∣ A ∣ A ∣ A ∣ = ∣ ∣ ∣ 3 A ∣ A ∣ A ∣ = ∣ ∣ 3 6 A ∣ A ∣ = ∣ ∣ ∣ 3 A ∣ A ∣ A ∣ = ∣ ∣ 3 6 A ∣ A ∣ = ∣ 3 30 3 A ∣ ∣ = 3 156 ||||A|A|A|A| = |||3A|A|A|=||3^{6}A|A|=|||3A|A|A|=||3^{6}A|A|=|3^{30}3A||=3^{156} ∣∣∣∣AAAA=∣∣∣3AAA=∣∣36AA=∣∣∣3AAA=∣∣36AA=3303A∣∣=3156

2 伴随矩阵

只有方阵才有伴随矩阵。矩阵的伴随矩阵:求所有元素的代数余子式,按行求的代数余子式按列放构成的矩阵,比如
A = ( 1 , 1 , 1 2 , 1 , 3 1 , 1 , 4 ) A= \left(\begin{matrix} 1,1,1\\2,1,3\\1,1,4\end{matrix}\right) A= 1,1,12,1,31,1,4 A 11 = 1 , A 12 = − 5 , A 13 = 1 , A 21 = − 3 , A 22 = 3 , A 23 = 0 , A 31 = 2 , A 32 = − 1 , A 33 = − 1 A_{11}=1,A_{12}=-5,A_{13}=1,A_{21}=-3,A_{22}=3,A_{23}=0,A_{31}=2,A_{32}=-1,A_{33}=-1 A11=1,A12=5,A13=1,A21=3,A22=3,A23=0,A31=2,A32=1,A33=1
求解出 A A A的伴随矩阵为 A ∗ = ( A 11 , A 21 , A 31 A 12 , A 22 , A 32 A 13 , A 23 , A 33 ) = ( 1 , − 3 , 2 − 5 , 3 , − 1 1 , 0 , − 1 ) A^{*}=\left(\begin{matrix} A_{11},A_{21},A_{31}\\A_{12},A_{22},A_{32}\\A_{13},A_{23},A_{33}\end{matrix}\right)=\left(\begin{matrix} 1,-3,2\\-5,3,-1\\1,0,-1\end{matrix}\right) A= A11,A21,A31A12,A22,A32A13,A23,A33 = 1,3,25,3,11,0,1

任意方阵 A A A,伴随矩阵的性质:

  • (1)按行求,按列放
  • (2) A A ∗ = A ∗ A = ∣ A ∣ E AA^{*} =A^{*} A = |A|E AA=AA=AE,证明过程直接将式子展开,元素之间相乘后化简就是了
  • (3) ∣ A A ∗ ∣ = ∣ ∣ A ∣ E ∣ ⇒ ∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ n ⇒ ∣ A ∗ ∣ = ∣ A ∣ n − 1 |AA^{*}| = ||A|E| \Rightarrow |A||A^{*}| = |A|^{n}\Rightarrow |A^{*}| = |A|^{n-1} AA=∣∣AEA∣∣A=AnA=An1,恒成立
  • (4) A − 1 = 1 ∣ A ∣ A ∗ , A ∗ = ∣ A ∣ A − 1 A^{-1} = \frac{1}{|A|}A^{*},A^{*} = |A|A^{-1} A1=A1A,A=AA1 ,这里就是使用了下面的逆矩阵的性质

3 逆矩阵

3.1 逆矩阵概念

假使 A A A为n阶方阵,如果存在n阶方阵 B B B,满足 A B = B A = E AB = BA =E AB=BA=E,则称 A A A的逆矩阵就为 B B B,记作 A − 1 = B A^{-1} = B A1=B

逆矩阵性质:

  • (1)未必所有的方阵都可逆,比如零矩阵
  • (2)若方阵可逆,那么逆矩阵唯一
  • (3) ∣ A ∣ ≠ 0 |A|\not=0 A=0,说明方阵为非奇异、非退化、满秩矩阵,可逆
  • (4) A A A可逆的充要条件为 ∣ A ∣ ≠ 0 , A − 1 = 1 ∣ A ∣ A ∗ |A|\not=0,A^{-1} = \frac{1}{|A|}A^{*} A=0A1=A1A
  • 推论(条件比定义的要求要弱一点): A A A为n阶方阵,如果存在n阶方阵 B B B,满足 A B = E AB =E AB=E满足 B A = E BA =E BA=E,则 A A A可逆, A − 1 = B A^{-1} = B A1=B

逆矩阵求解:
(1)按照定义,可以使用伴随矩阵求解,但是过程太麻烦了
(2)初等变换法,一般使用的方式

例题, A = [ 1 , 1 , 1 2 , 1 , 3 1 , 1 , 4 ] A= \left[\begin{matrix} 1,1,1\\2,1,3\\1,1,4\end{matrix}\right] A= 1,1,12,1,31,1,4 ,其中 ∣ A ∣ ≠ 0 |A| \not=0 A=0,求解 A − 1 A^{-1} A1

解:按照定义求解,上面已经得到了 A A A的伴随矩阵,这里直接就进行计算出 ∣ A ∣ |A| A,即可
A − 1 = 1 ∣ A ∣ A ∗ = 1 3 ( 1 , − 3 , 2 − 5 , 3 , − 1 1 , 0 , − 1 ) A^{-1} = \frac{1}{|A|}A^{*} = \frac{1}{3}\left(\begin{matrix} 1,-3,2\\-5,3,-1\\1,0,-1\end{matrix}\right) A1=A1A=31 1,3,25,3,11,0,1

例题, A + B = A B A+B=AB A+B=AB,证明 A − E A-E AE可逆,

解:这种只给了式子证明可逆的行为,就是要求努力拼凑出定义的式子,将 E E E凑在右边时,就出来了
A B − A − B + E = E ⇒ ( A − E ) ( B − E ) = E AB - A -B+E= E \Rightarrow (A-E)(B-E)=E ABAB+E=E(AE)(BE)=E

例题, A = [ 4 , 2 , 3 1 , 1 , 0 − 1 , 2 , 3 ] A= \left[\begin{matrix} 4,2,3\\1,1,0\\-1,2,3\end{matrix}\right] A= 4,2,31,1,01,2,3 ,已知 A X = A + 2 X AX = A+2X AX=A+2X,求解 X X X

解:先将给出的等式进行化简,如下(要特别注意矩阵相乘的时候的位置,“左乘”和“右乘”是有很大区别的)
A X − 2 X = A ⇒ ( A − 2 E ) X = A ⇒ X = ( A − 2 E ) − 1 A AX-2X = A \Rightarrow (A-2E)X =A \Rightarrow X = (A-2E)^{-1}A AX2X=A(A2E)X=AX=(A2E)1A

特别注意:
1)矩阵相乘时候的方向位置很重要, ( A − 2 E ) − 1 A (A-2E)^{-1}A (A2E)1A A ( A − 2 E ) − 1 A(A-2E)^{-1} A(A2E)1不一样
2)没有矩阵和数值的加减法,因此要自觉补充 E E E A − 2 ⇒ A − 2 E A-2 \Rightarrow A-2E A2A2E
3)在分母上不要出现矩阵,不应该出现 A A − 2 E \frac{A}{A-2E} A2EA
4)先判断可逆,再写逆矩阵。在使用 ( A − 2 E ) − 1 (A-2E)^{-1} (A2E)1之前,一定要先判断 A − 2 E A-2E A2E是可逆的,也就是行列式的值不为0.(容易掉进坑里面去)
5)伴随矩阵求解
6)初等变换求解(之后梳理)

3.2 逆矩阵的性质

  • (5) A A A可逆, A − 1 A^{-1} A1可逆,则 ( A − 1 ) − 1 = A (A^{-1})^{-1} = A (A1)1=A,对比转置的性质 ( A T ) T = A (A^{T})^{T} = A (AT)T=A
  • (6) A , B A,B A,B均可逆, A B AB AB可逆, ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1,对比转置的性质 ( A B ) T = B T A T (AB)^{T}= B^{T}A^{T} (AB)T=BTAT
  • (7) A A A可逆, A T A^{T} AT可逆,则 ( A T ) − 1 = ( A − 1 ) T , k ≠ 0 , ( k A ) − 1 = 1 k A − 1 (A^{T})^{-1} = (A^{-1})^{T}, k\not=0,(kA)^{-1} = \frac{1}{k}A^{-1} (AT)1=(A1)T,k=0,(kA)1=k1A1
  • (8) A A A可逆, ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}| = |A|^{-1} A1=A1
  • (9) A A A可逆, A ∗ A^{*} A也可逆,则 ( A ∗ ) − 1 = 1 ∣ A ∣ A (A^{*})^{-1}= \frac{1}{|A|}A (A)1=A1A

最后结合这伴随矩阵和逆矩阵的性质,求解 ( A ∗ ) ∗ (A^{*})^{*} (A) ( ( A ∗ ) ∗ ) ∗ ((A^{*})^{*})^{*} ((A))

解:根据 A ∗ = ∣ A ∣ A − 1 A^{*} = |A|A^{-1} A=AA1,所以 ( A ∗ ) ∗ = ∣ A ∗ ∣ ( A ∗ ) − 1 = ∣ A ∣ n − 1 A ∣ A ∣ = ∣ A ∣ n − 2 A (A^{*})^{*} =|A^{*}|(A^{*})^{-1}=|A|^{n-1}\frac{A}{|A|} = |A|^{n-2}A (A)=A(A)1=An1AA=An2A

( ( A ∗ ) ∗ ) ∗ = ∣ A ∗ ∣ n − 2 A ∗ = ( ∣ A ∣ n − 1 ) n − 2 ∣ A ∣ A − 1 = ∣ A ∣ n 2 − 3 n + 3 A − 1 ((A^{*})^{*})^{*} =|A^{*}|^{n-2}A^{*} =(|A|^{n-1})^{n-2}|A|A^{-1}=|A|^{n^{2}-3n+3}A^{-1} ((A))=An2A=(An1)n2AA1=An23n+3A1

  • 11
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 线性代数中,矩阵行列式是密切相关的。行列式是一个数,而矩阵是一个矩形的数组。一个 n 阶方阵的行列式可以看作是该矩阵的 n 个行向量组成的矩阵行列式,也可以看作是该矩阵的 n 个列向量组成的矩阵行列式。此外,矩阵行列式为零,当且仅当该矩阵的行向量或列向量线性相关。 ### 回答2: 线性代数中的矩阵行列式有很密切的关系。首先,矩阵是由数字排列成的矩形表格,而行列式则是一个特殊的数值。矩阵中的每个数字称为矩阵的元素,行列式是由矩阵的元素进行运算得到的数值。 在线性代数中,矩阵可以用来表示线性变换、线性方程组和向量空间的映射等。而行列式则是矩阵的一个重要的性质。 对于一个n阶方阵,它的行列式是一个数,可以通过对矩阵中的元素进行特定的运算得到。行列式可以提供关于矩阵的一些重要信息,比如矩阵的可逆性、特征值和特征向量等。通过计算行列式,我们可以判断方阵是否可逆,进而判断线性方程组是否有唯一解或无解。 同时,行列式也可以用来计算矩阵伴随矩阵逆矩阵,以及求解高阶的线性方程组。行列式还可以用来求解线性方程组的Cramer法则,其中通过分别将未知数的系数矩阵替换为解向量列组成的矩阵,通过行列式的运算求解未知数。 总的来说,矩阵行列式线性代数中的两个重要概念。矩阵可以用来表示线性变换和解决线性方程组问题,行列式则是对矩阵的一种特殊运算,可以提供关于矩阵的重要信息,并用于求解矩阵逆矩阵和解线性方程组。 ### 回答3: 线性代数中的矩阵行列式是密切相关的概念。 首先,矩阵是由一组数按照规则排列成的一个矩形阵列。矩阵可以是任意大小,并且可以包含实数或复数等不同类型的数。矩阵中的元素按照行和列的顺序进行编号,例如一个m行n列的矩阵可以表示为A=[a_ij],其中i表示行号,j表示列号,a_ij表示矩阵A中第i行第j列处的元素。 行列式是一个特殊的函数,它将一个n阶的方阵映射到一个标量,通常用竖线包围矩阵的元素来表示,例如|A|。行列式的值可以用于判断矩阵是否可逆,以及描述线性变换的性质等。行列式的定义涉及到递归计算,包括求和与乘法等操作。 矩阵行列式之间存在着紧密的联系。特别地,给定一个n阶矩阵A,可以使用它的元素构建一个与A相关的n阶行列式。这个行列式通常被记作det(A),它由A的元素按照特定的顺序进行组合计算得到。矩阵行列式可以用来描述矩阵的很多性质,例如可逆性、特征值和特征向量等。行列式还可以用于解线性方程组、计算行列式的秩和相关矩阵的逆等。 总而言之,线性代数中的矩阵行列式是紧密相关的概念。矩阵是一种数据结构,行列式是一种通过矩阵元素组合计算得到的标量。行列式可以用于描述矩阵的性质,并且矩阵的元素可以用来构造与之相关的行列式。这种联系使得矩阵行列式成为线性代数中基础而重要的概念。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值