矩阵的行列式求法

矩阵 A A A的行列式可表示为 ∣ A ∣ |A| A d e t ( A ) det(A) det(A),求法如下:

二阶行列式:
∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix}=ad-bc acbd=adbc

三阶行列式:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 = a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 23 a 31 − a 21 a 33 ) + a 13 ( a 21 a 32 − a 22 a 31 ) \begin{vmatrix} a_{11} & a_{12}&a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32}& a_{33}\end{vmatrix} =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} =a_{11}(a_{22}a_{33}-a_{23}a_{32})+a_{12}(a_{23}a_{31}-a_{21}a_{33})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31=a11(a22a33a23a32)+a12(a23a31a21a33)+a13(a21a32a22a31)

矩阵中任意元素 a i j a_{ij} aij的余子式 M i j M_{ij} Mij就是把 A A A中第 i i i行,第 j j j列的元素去掉后的行列式值。
矩阵的代数余子式 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

n×n矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和:
d e t ( A ) = a i 1 A i 1 + ⋯ + a i n A i n det(A)=a_{i1}A_{i1}+\cdots +a_{in}A_{in} det(A)=ai1Ai1++ainAin

在C语言中计算对称矩阵行列式,可以使用高斯消元或者利用矩阵的特性来简化计算。对称矩阵意味着它的主对角线元素相等,其他元素关于主对角线是对称的。例如,一个3x3的对称矩阵会看起来像这样: ``` | a b c | | b a d | | c d a | ``` 其中a = d且b = c。 对于这类矩阵,有快速的算法可以利用这种特殊结构来计算行列式。你可以选择以下几种方法之一: 1. **LU分解**:首先将对称矩阵转换成上三角形式(U),然后通过乘积 `det(A) = det(U) * det(L)` 计算行列式,其中L是下三角矩阵,因为对称矩阵的L和U是对称的,这一步可以用递归公式完成。 2. **特征值方法**:由于对称矩阵的实数特征值是唯一确定的,可以先找到特征值,然后行列式就是特征值之积。计算特征值通常涉及解特征多项式,但这需要额外的库支持,比如数值计算库。 3. **行主序展开**:可以选择行主序(即按行交替展开法则),对称矩阵在这种情况下展开后的系数是相同的,这能简化计算过程。 ```c // 示例代码片段(非完整版) #include <stdio.h> double determinant(int n, double matrix[n][n]) { if (n == 2) { return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]; } else { int i; double sub_determinant = 0.0; for (i = 0; i < n; i++) { // 按行交替展开 sub_determinant += matrix[0][i] * determinant(n - 1, &matrix[1][i]); } return sub_determinant; } } int main() { double symmetric_matrix[3][3] = { {1, 2, 2}, {2, 1, 2}, {2, 2, 1} }; printf("The determinant is: %.2f\n", determinant(3, symmetric_matrix)); return 0; } ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值