矩阵的行列式求法

矩阵 A A A的行列式可表示为 ∣ A ∣ |A| A d e t ( A ) det(A) det(A),求法如下:

二阶行列式:
∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix}=ad-bc acbd=adbc

三阶行列式:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 = a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 23 a 31 − a 21 a 33 ) + a 13 ( a 21 a 32 − a 22 a 31 ) \begin{vmatrix} a_{11} & a_{12}&a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32}& a_{33}\end{vmatrix} =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31} =a_{11}(a_{22}a_{33}-a_{23}a_{32})+a_{12}(a_{23}a_{31}-a_{21}a_{33})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a22a31=a11(a22a33a23a32)+a12(a23a31a21a33)+a13(a21a32a22a31)

矩阵中任意元素 a i j a_{ij} aij的余子式 M i j M_{ij} Mij就是把 A A A中第 i i i行,第 j j j列的元素去掉后的行列式值。
矩阵的代数余子式 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

n×n矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和:
d e t ( A ) = a i 1 A i 1 + ⋯ + a i n A i n det(A)=a_{i1}A_{i1}+\cdots +a_{in}A_{in} det(A)=ai1Ai1++ainAin

  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值