学会使用langchain+openai+qdrant建立第一个RAG应用

LLM 支持的最强大的应用程序之一是复杂的问答 (Q&A) 聊天机器人。这些应用程序可以回答有关特定源信息的问题。这些应用程序使用一种称为[检索增强生成 (RAG)] 的技术。

什么是 RAG?

RAG 是一种通过附加数据增强 LLM 知识的技术。

LLM 可以推理广泛的主题,但它们的知识仅限于它们接受训练的特定时间点的公共数据。如果你想构建能够推理私有数据或模型截止日期后引入的数据的 AI 应用程序,则需要使用模型所需的特定信息来增强模型的知识。将适当的信息插入模型提示的过程称为检索增强生成 (RAG)。

典型的 RAG 应用程序有两个主要组件:

  • 索引:从源中提取数据并对其进行索引的管道。这通常是离线进行的。

  • 检索和生成:实际的 RAG 链,它在运行时接受用户查询并从索引中检索相关数据,然后将其传递给模型。

从原始数据到答案的最常见完整序列如下所示:

索引

  1. 加载:首先,我们需要加载数据。这是通过文档加载器完成的。

  2. 拆分:文本拆分器将大型文档拆分成较小的块。这对于索引数据和将其传递给模型都很有用,因为大块更难搜索,并且不适合模型的有限上下文窗口。

  3. 存储:我们需要一个地方来存储和索引我们的拆分,以便以后可以搜索它们。这通常使用 VectorStore 和 Embeddings 模型来完成。

检索和生成

4. 检索:给定用户输入,使用检索器从存储中检索相关文档块。

5. 生成:ChatModel/LLM 使用包含问题和检索到的数据的提示生成答案。

接下来我将按照上述步骤,使用 LangChain + OpenAI + Qdrant 实现一个简单的 RAG 应用。

Qdrant 是一种 VectorStore(向量数据库)。我们可以将文档块的嵌入表示存储在 VectorStore 中。

加载 & 拆分

我将使用 GPT4All 的技术报告来作为我们这个 RAG 应用的数据源,你可以在项目的 data 目录下看到名为《2023_GPT4All_Technical_Report》的 PDF 文件。

第一步是导入我在环境变量中设置的 OpenAI 的配置信息:

import os
OPENAI_API_BASE = os.environ.get('OPENAI_API_BASE')OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')

然后就可以配置 LLM 和 embedding 模型了:

from langchain_openai import ChatOpenAIfrom langchain_openai import OpenAIEmbeddings
llm = ChatOpenAI(model="gpt-3.5-turbo")embeddings = OpenAIEmbeddings()

1. 加载 PDF 文件

from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("./data/2023_GPT4All_Technical_Report.pdf")
pages = []async for page in loader.alazy_load():    pages.append(page)

2. 拆分

虽然我们加载的文档并不长,但是在你可能会加载更长的文档。当文档过长时,就无法放入许多模型的上下文窗口中(一般模型的上下文窗口只有 32k或者 64k)。

为了解决这个问题,我们将文档拆分成块以进行嵌入和向量存储。这应该有助于我们在运行时仅检索文档中最相关的部分。

在这种情况下,我们将文档拆分成 1000 个字符的块,块之间有 200 个字符的重叠。重叠有助于减轻将语句与与其相关的重要上下文分离的可能性。我们使用 RecursiveCharacterTextSplitter,它将使用常用分隔符(如换行符)递归拆分文档,直到每个块的大小合适。这是针对一般文本用例的推荐文本拆分器。

我们设置 add_start_index=True,以便每个拆分文档在初始文档中开始的字符索引保留为元数据属性“start_index”。

可以看到是两个块之间是有重叠的:

存储

3. 存储

我们将使用语义搜索实现检索功能,所以最常见的方法是嵌入每个文档拆分的内容,并将这些嵌入插入到 VectorStore 中。

当用户输入查询后,查询也会被转成嵌入向量,然后执行某种“相似性”搜索,以识别与我们的查询嵌入最相似的嵌入的文档块。最简单的相似性度量是余弦相似性:测量每对嵌入(高维向量)之间角度的余弦。

现在我们将使用 OpenAIEmbeddings 模型在单个命令中嵌入所有文档块。并使用 Qdrant 存储。

默认使用的 OpenAI 嵌入模型是 text-embedding-ada-002,它将文本转成 1536 维的向量。所以我们可以这样初始化 Qdrant:

在这里插入图片描述

我们创建了一个名为 demo_collection 的 VectorStore,现在我们将文档块加进去:

在这里插入图片描述

检索 & 生成

现在让我们编写实际的应用程序逻辑。我们想要创建一个简单的应用程序,它接受用户问题:

  1. 搜索与该问题相关的文档,

  2. 将检索到的文档和初始问题传递给模型,并返回答案。

4. 检索

首先,我们需要定义搜索文档的逻辑。LangChain 定义了一个 Retriever 接口,它包装了一个索引,可以根据字符串查询返回相关文档。

最常见的 Retriever 类型是 VectorStoreRetriever,它使用向量存储的相似性搜索功能来促进检索。任何 VectorStore 都可以通过 VectorStore.as_retriever() 轻松转换为 Retriever:

retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 6})
retrieved_docs = retriever.invoke("What was the cost of training the GPT4all-lora model?")

当我们检索训练 GPT4all-lora 模型花费了多少时,我们可以得到 6 段与这个问题在语义上相似的文档块:

5. 生成

让我们将所有内容整合成一个链条,该链条接收问题、检索相关文档、构造提示、将其传递给模型并解析输出。

我们将使用 gpt-3.5-turbo OpenAI 聊天模型,但你可以替换成任何 LangChain LLM 或 ChatModel。

import textwrapfrom langchain.chains import create_retrieval_chainfrom langchain.chains.combine_documents import create_stuff_documents_chainfrom langchain_core.prompts import ChatPromptTemplate
system_prompt = (    "You are an assistant for question-answering tasks. "    "Use the following pieces of retrieved context to answer "    "the question. If you don't know the answer, say that you "    "don't know. Use three sentences maximum and keep the "    "answer concise."    "\n\n"    "{context}")
prompt = ChatPromptTemplate.from_messages(    [        ("system", system_prompt),        ("human", "{input}"),    ])

question_answer_chain = create_stuff_documents_chain(llm, prompt)rag_chain = create_retrieval_chain(retriever, question_answer_chain)
response = rag_chain.invoke({"input": "What was the cost of training the GPT4all-lora model?"})print(textwrap.fill(response["answer"], 80))

我们可以从原文看到答案其实应该只需要红框内的就行了:

我们再问该技术报告的作者是谁?

这次是完全正确的:

那么我们再问一下从文档中查不到答案的问题:

这个回复还算友好。

源码链接:

https://github.com/realyinchen/RAG/blob/main/ChatGPT%20for%20YOUR%20OWN%20PDF%20files%20with%20LangChain.ipynb

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### OpenAI LangChain RAG介绍 OpenAI LangChain中的RAG(Retrieval-Augmented Generation)是一种结合检索和生成的方法,旨在提高自然语言处理任务的效果。这种方法不仅依赖于预训练的语言模型本身的知识,还利用外部数据源的信息来增强响应的质量和准确性[^1]。 对于希望构建基于文本的应用程序开发者来说,采用Weaviate作为向量数据库可以极大地简化这一过程。通过集成这些组件,能够实现高效的数据索引、查询以及上下文感知的回答生成。这使得即使面对复杂多变的需求也能够迅速调整并部署解决方案。 ### 使用教程 为了更好地理解和运用LangChain框架下的RAG功能,在实际操作前需先熟悉几个关键概念和技术栈: #### 安装必要的库文件 首先安装所需的Python包,包括但不限于`langchain`, `weaviate-client`等。 ```bash pip install langchain weaviate-client openai streamlit ``` #### 初始化Weaviate客户端连接 创建一个到Weaviate实例的链接用于后续的操作,比如加载文档或执行相似度搜索。 ```python import weaviate client = weaviate.Client("http://localhost:8080") # 替换成自己的服务器地址 ``` #### 构建知识图谱 将结构化或非结构化的信息导入至Weaviate中形成可供检索的知识库。 ```python class_obj = { "class": "Document", "properties": [ {"name": "content", "dataType": ["text"]} ] } client.schema.create_class(class_obj) ``` #### 实现问答系统的核心逻辑 定义函数接收用户输入的问题字符串,经过编码转换成向量形式后传给Weaviate做近邻查找;接着把找到的结果连同原始问题一起送入大型语言模型以获取最终答案。 ```python from langchain import PromptTemplate, LLMChain template = """Based on the following context {context}, answer this question:{question}""" prompt = PromptTemplate(template=template, input_variables=["context", "question"]) llm_chain = LLMChain(prompt=prompt) def get_answer(question): nearText = {"concepts": [question]} response = client.query.get("Document", "content").with_near_text(nearText).do() contexts = [item['content'] for item in response['data']['Get']['Document']] combined_context = "\n".join(contexts[:3]) # 取前三条记录的内容拼接起来当作背景信息 result = llm_chain.run({"context": combined_context, "question": question}) return result ``` 以上代码片段展示了如何搭建一个简单的基于LangChain与Weaviate的合作平台来进行RAG式的交互式问答服务[^4]。 ### 最佳实践 当涉及到具体应用场景时,除了上述基础流程外还需要考虑更多细节方面的问题,例如性能优化、安全性保障及用户体验提升等方面的工作。以下是几点建议: - **持续迭代改进**:随着项目的发展不断收集反馈意见并对算法参数做出相应调整,从而达到更好的效果; - **保护隐私安全**:确保所有敏感数据都得到妥善保管,并遵循当地法律法规的要求; - **注重效率平衡**:既要保证回复速度又要兼顾质量,合理配置计算资源分配比例; - **加强可解释性建设**:让用户清楚知道决策背后的原因是什么样的依据支持着给出的答案[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值