手动计算LOF异常检测算法

本文通过手动计算LOF(局部离群因子)算法,详细解释其与KNN的关系,以及如何计算局部可达密度和LOF值,以帮助初学者理解异常检测中的LOF算法。
摘要由CSDN通过智能技术生成

原创 小伍哥

收录于合集#异常检测17个

LOF这个算法,我之前转载过一篇文章,并且网上写的也很多,各种文章的介绍,都是很多圈圈,我是看着看着,就蒙圈了,初学者很难理解里面的各种距离和转换,我今天换个角度讲讲,希望能帮助大家理解。这个算法非常简单,总结一句话:就是找邻居,然后加减乘除就完了。

一、LOF与KNN的关系?

在scikit-learn库里面,把这个算法放在了KNN这个系列,其实就是简单的距离计算。简单说:就是一个点的密度,与邻居的平均密度比,某个点的密计算,与其K个邻居有关。所以,我们只要理解一个点的密度怎么算就行了

二、LOF相关的定义

先讲几个基本概念,看不懂没关系,先看下面的案例,结合起来就很轻松的能看懂了。

1、可达距离

一个点的密度怎么计算呢?首先就是找到每个点的K个邻居。初步理解就是这个点的K个邻居到这个点的距离的平均值。有两个点要注意,第一是计算邻居到该点的距离,第二个是取平均。上面的理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值