AI的图像处理技术---第三篇《卷积神经网络的迁移学习》

卷积神经网络的迁移学习是为了利用已经训练好的神经网络参数,在此基础上进行新的训练,加快训练的速度。

# -*- coding:utf-8 -*-
'''
file: main.py
'''

import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile

#Inception-V3 模型瓶颈层的节点个数
BOTTLENECK_TENSOR_SIZE = 2048

#Inception-v3 模型中代表瓶颈层结果的张量名称。在谷歌提供的Inception-v3模型中,这个张量名称
#就是'pool3/_reshape:0'。在训练模型时,可以通过tensor.name来获取 张量的名称
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'

#图像输入张量所对应的名称。
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'

#下载的谷歌训练好的Inception-v3模型文件目录
MODEL_DIR = './model/'

#下载的谷歌训练好的Inception-v3模型文件名。
MODEL_FILE = 'tensorflow_inception_graph.pb'

#因为一个训练数据会被使用多次,所以可以将原始图像通过Inception-v3模型计算得到的特征向量
#保存在文件中,免去重复的计算。
CACHE_DIR = './tmp/bottleneck'

#图片数据文件夹。在这个文件夹中每一个子文件代表一个需要区分的类别
#每个子文件夹中存放了对应类别的图片
INPUT_DATA = './flower_photos'

#验证的数据百分比
VALIDATION_PERCENTAGE = 10
#测试的数据百分比
TEST_PERCENTAGE = 10

#定义神经网络的设置。
LEARNING_RATE = 0.01
STEPS = 4000
BATCH = 100

#这个函数从数据文件夹中读取所有的图片列表并按训练、验证、测试数据分开。
#testiong_percentage和validation_percentage参数制订了测试数据集和验证数据集的大小。
def create_image_lists(testing_percentage, validation_percentage):
    #得到的所有图片都存在result 这个字典里,这个字典的key为类别的名称,value也是一个字典,
    #字典里存储了所有的图片名称。
    result = {}
    #获取当前目录下所有的子目录
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    #得到的第一个目录是当前目录,不需要考虑
    is_root_dir = True
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue
        #获取当前目录下所有的有效图片文件。
        extensions = ['jpg','jpeg','JPG','JPEG']
        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name,'*.'+ extension)
            file_list.extend(glob.glob(file_glob))
        if not file_list:
            continue
        label_name = dir_name.lower()
        #初始化当前类别的训练数据集、测试数据集和验证数据集
        training_images = []
        testing_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)
            #随机将数据分到训练数据集、测试数据集和验证数据集
            chance = np.random.randint(100)
            if chance < validation_percentage:
                validation_images.append(base_name)
            elif chance < (testing_percentage + validation_percentage):
                testing_images.append(base_name)
            else:
                training_images.append(base_name)
        result[label_name] = {
            'dir':dir_name,
            'training':training_images,
            'testing':testing_images,
            'validation':validation_images,
            
        }
    return result

#这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址。
#image_lists参数给出了所有图片信息
#image_dir参数给出了根目录。存放图片数据的根目录和存放图片特征向量的根目录目录地址不同。
#label_name参数给定了类别的名称。
#index参数给定了需要获取的图片的编号。
#category 参数制订了需要获取的图片是在训练数据集、测试数据集还是验证数据集。
def get_image_path(image_lists, image_dir, label_name, index, category):
    #获取给定类别总所有图片的信息.
    label_lists = image_lists[label_name]
    #根据所属数据集的名称获取集合中的全部图片信息.
    category_list = label_lists[category]
    mod_index = index % len(category_list)
    #获取图片的文件名。
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    #最终的地址为数据根目录的地址加上类别的文件夹加上图片的名称。
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path

#这个函数通过类别名称、所属数据集和图片编号获取经过Inception-v3模型处理之后的特征向量文件地址。
def get_bottleneck_path(image_lists, label_name, index, category):
    return get_image_path(image_lists, CACHE_DIR,
                            label_name, index, category)+'.txt'

#这个函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                                bottleneck_tensor):
    #这个过程实际上就是将当前图片作为输入计算瓶颈张量的值。这个瓶颈张量的值就是这张图片的新的特征向量。
    bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor:image_data})
    #经过卷积神经网络处理的结果是一个四维数组,需要将这个结果压缩成一个特征向量
    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values

#这个函数获取一张图片经过Inception-v3模型处理之后的特征向量,这个函数会先试图寻找已经
#计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件。
def get_or_create_bottleneck(
        sess, image_lists, label_name, index,
        category, jpeg_data_tensor, bottleneck_tensor):
    #获取一张图片对应的特征向量文件的路径。
    label_lists = image_lists[label_name]
    sub_dir = label_lists['dir']
    sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
    if not os.path.exists(sub_dir_path):
        os.makedirs(sub_dir_path)
    bottleneck_path = get_bottleneck_path(
        image_lists, label_name, index, category)
    #如果这个特征限量文件不存在,则通过Inception-v3模型来计算特征向量,并将计算的记过存入文件。
    if not os.path.exists(bottleneck_path):
        #获取原始的图片路径
        image_path = get_image_path(
            image_lists, INPUT_DATA, label_name, index, category)
        #获取图片内容。
        image_data = gfile.FastGFile(image_path, 'rb').read()
        #通过Inception-v3模型计算特征向量。
        bottleneck_values = run_bottleneck_on_image(
            sess, image_data, jpeg_data_tensor, bottleneck_tensor)
        #将计算得到的特征向量存入文件。
        bottleneck_string = ','.join(str(x) for x in bottleneck_values)
        with open(bottleneck_path, 'w') as bottleneck_file:
            bottleneck_file.write(bottleneck_string)
    else:
        #直接从文件中获取图片相应的特征向量。
        with open(bottleneck_path, 'r') as bottleneck_file:
            bottleneck_string = bottleneck_file.read()
        bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
    return bottleneck_values

#这个函数随机获取一个batch的图片作为训练数据
def get_random_cached_bottlenecks(
    sess, n_classes, image_lists, how_many, category,
    jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    for _ in range(how_many):
        #随机一个类别和图片的编号加入当前的训练数据。
        label_index = random.randrange(n_classes)
        label_name = list(image_lists.keys())[label_index]
        image_index = random.randrange(65536)
        bottleneck = get_or_create_bottleneck(
                        sess, image_lists, label_name, image_index, category,
                        jpeg_data_tensor, bottleneck_tensor)
        ground_truth = np.zeros(n_classes,  dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)
    return bottlenecks, ground_truths

#这个函数获取全部的测试数据,在最终测试的时候需要在所有的测试数据上计算正确率
def get_test_bottlenecks(sess, image_lists, n_classes,
                            jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    label_name_list = list(image_lists.keys())
    #枚举所有的类别和每一个类别中的测试图片。
    for label_index, label_name in enumerate(label_name_list):
        category = 'testing'
        for index, unused_base_name in enumerate(
                                image_lists[label_name][category]):
            #通过Inception-v3模型计算图片对应的特征向量,并将其加入最终数据的列表
            bottleneck = get_or_create_bottleneck(
                            sess, image_lists, label_name, index, category,
                            jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype = np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
    return bottlenecks, ground_truths

def main(_):
    #读取所有图片。
    image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
    n_classes = len(image_lists.keys())
    #读取已经训练好的Inception-v3模型。谷歌训练好的模型保存在GraphDef Protocol Buffer中,
    #里面保存了每一个节点取值的计算方法以及变量的取值。
    with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    #加载读取的Inception-v3模型,并返回数据输入所对应的张量以及计算瓶颈层结果所对应的张量。
    bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(
                    graph_def,
                    return_elements = [BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])
    #定义新的神经网络输入,这个输入就是新的图片经过Inception-v3模型前向传播到达瓶颈层时
    #节点取值,可以将这个过程类似的理解为一种特征提取。
    bottleneck_input = tf.placeholder(
                            tf.float32, [None, BOTTLENECK_TENSOR_SIZE],
                            name = 'BottleneckInputPlaceholder')
    #定义新的标准答案输入。
    ground_truth_input = tf.placeholder(
                            tf.float32, [None, n_classes],
                            name = 'GroundTruthInput')
    #定义一层全链接层来解决新的图片分类问题。因为训练好的Inception-v3模型已经将原始的图片抽象为了
    #更容易分类的特征向量了,所以不需要在训练那么复杂的神经网络来完成这个新的分类任务。
    with tf.name_scope('final_training_ops'):
        weights = tf.Variable(tf.truncated_normal(
                    [BOTTLENECK_TENSOR_SIZE, n_classes], stddev = 0.001))
        biases = tf.Variable(tf.zeros([n_classes]))
        logits = tf.matmul(bottleneck_input, weights) + biases
        final_tensor = tf.nn.softmax(logits)
    #定义交叉熵损失函数。
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
                        logits = logits, labels = ground_truth_input)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE)\
                        .minimize(cross_entropy_mean)
    #计算正确率。
    with tf.name_scope('evaluation'):
        correct_prediction = tf.equal(tf.argmax(final_tensor, 1),
                                    tf.argmax(ground_truth_input,1))
        evaluation_step = tf.reduce_mean(
                            tf.cast(correct_prediction, tf.float32))
    with tf.Session() as sess:
        init = tf.initialize_all_variables()
        sess.run(init)

        #训练过程。
        for i in range(STEPS):
            #每一次获取一个batch 的训练数据。
            train_bottlenecks, train_ground_truth = \
                get_random_cached_bottlenecks(
                    sess, n_classes, image_lists, BATCH,
                    'training', jpeg_data_tensor, bottleneck_tensor)
            sess.run(train_step,
                    feed_dict = {bottleneck_input:train_bottlenecks,
                                ground_truth_input:train_ground_truth})
            #在验证数据上测试正确率。
            if i% 100 ==0 or i+1 == STEPS:
                validation_bottlenecks, validation_ground_truth = \
                    get_random_cached_bottlenecks(
                        sess, n_classes, image_lists, BATCH,
                        'validation', jpeg_data_tensor, bottleneck_tensor)
                validation_accuracy = sess.run(
                        evaluation_step, feed_dict = {
                            bottleneck_input:validation_bottlenecks,
                            ground_truth_input: validation_ground_truth})
                print('Step %d: Validation accuracy on random sampled'
                        '%d examples = %.1f%%'%
                        (i, BATCH, validation_accuracy*100))
            #在最后的测试数据上测试正确率。
            test_bottlenecks, test_ground_truth = get_test_bottlenecks(
                sess, image_lists, n_classes, jpeg_data_tensor,
                bottleneck_tensor)
            test_accuracy = sess.run(evaluation_step, feed_dict = {
                bottleneck_input:test_bottlenecks,
                ground_truth_input:test_ground_truth})
            print('Final test accuracy = %.1f%%'%(test_accuracy*100))

if __name__ == '__main__':
    tf.app.run()




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值