本博文源于《商务统计》,旨在讲述如何理解多元线性回归中的F检验。
问题起源
我们通过统计软件计算多元线性回归的参数,计算测得后,如何更好的描述你拥有回归参数对y的影响呢?换句话说,如果某一个参数消失会不会对y产生影响。那我们就要做假设检验证明它们具有很强的线性关系。
假设
H
0
:
β
1
=
β
2
=
.
.
.
.
=
β
k
=
0
线
性
关
系
不
显
著
H
1
:
β
1
,
β
2
,
.
.
.
.
β
k
至
少
有
一
个
不
等
于
0
H_0:\beta_1=\beta_2=....=\beta_k=0 线性关系不显著\\ H_1:\beta_1,\beta_2,....\beta_k 至少有一个不等于0
H0:β1=β2=....=βk=0线性关系不显著H1:β1,β2,....βk至少有一个不等于0
线性关系检验简要介绍
刚才上面给出了原假设和备择假设。它是检验因变量与所有自变量之间的线性关系是否显著.也被称为总体的显著性检验。
所采用的检验方法是将回归均方和(MSR)同离差均方和(MSE)加以比较,应用F检验来分析二者之间的差别是否显著。
- 如果是显著的,因变量与自变量之间存在线性关系。
- 如果不显著,因变量与自变量之间不存在线性关系。
计算检验统计量F
F
=
S
S
R
/
k
S
S
E
/
n
−
k
−
1
=
∑
i
=
1
n
(
y
^
i
−
y
ˉ
)
2
/
k
∑
i
=
1
n
(
y
i
−
y
^
)
2
/
n
−
k
−
1
∼
F
(
k
,
n
−
k
−
1
)
F=\frac{SSR/k}{SSE/n-k-1}=\frac{\sum_{i=1}^n(\hat{y}_i-\bar{y})^2/k}{\sum_{i=1}^n(y_i-\hat{y})^2/n-k-1}\sim{F(k,n-k-1)}
F=SSE/n−k−1SSR/k=∑i=1n(yi−y^)2/n−k−1∑i=1n(y^i−yˉ)2/k∼F(k,n−k−1)
确定显著性水平
α
\alpha
α和分子自由度k、分母自由度n-k-1找出临界值
F
α
F_\alpha
Fα
统计决策
若 F > F α F\gt{F_\alpha} F>Fα,或P值< α \alpha α,拒绝 H 0 H_0 H0
总结
当我们想要测定多元自变量是否整体与y因变量线性相关时,就需要F检验。 F检验的计算公式都已经给出,在相应的统计软件中只需要输入数据,选中几个选项即可。