统计|如何理解多元线性回归的F检验的作用与目的

本文探讨了如何使用F检验评估多元线性回归模型中自变量与因变量间线性关系的显著性。介绍了F检验的基本原理,包括假设设置、检验统计量计算及决策过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博文源于《商务统计》,旨在讲述如何理解多元线性回归中的F检验。

问题起源

在这里插入图片描述
我们通过统计软件计算多元线性回归的参数,计算测得后,如何更好的描述你拥有回归参数对y的影响呢?换句话说,如果某一个参数消失会不会对y产生影响。那我们就要做假设检验证明它们具有很强的线性关系。
假设
H 0 : β 1 = β 2 = . . . . = β k = 0 线 性 关 系 不 显 著 H 1 : β 1 , β 2 , . . . . β k 至 少 有 一 个 不 等 于 0 H_0:\beta_1=\beta_2=....=\beta_k=0 线性关系不显著\\ H_1:\beta_1,\beta_2,....\beta_k 至少有一个不等于0 H0:β1=β2=....=βk=0线H1:β1,β2,....βk0

线性关系检验简要介绍

刚才上面给出了原假设和备择假设。它是检验因变量与所有自变量之间的线性关系是否显著.也被称为总体的显著性检验。
所采用的检验方法是将回归均方和(MSR)同离差均方和(MSE)加以比较,应用F检验来分析二者之间的差别是否显著。

  • 如果是显著的,因变量与自变量之间存在线性关系。
  • 如果不显著,因变量与自变量之间不存在线性关系。

计算检验统计量F

F = S S R / k S S E / n − k − 1 = ∑ i = 1 n ( y ^ i − y ˉ ) 2 / k ∑ i = 1 n ( y i − y ^ ) 2 / n − k − 1 ∼ F ( k , n − k − 1 ) F=\frac{SSR/k}{SSE/n-k-1}=\frac{\sum_{i=1}^n(\hat{y}_i-\bar{y})^2/k}{\sum_{i=1}^n(y_i-\hat{y})^2/n-k-1}\sim{F(k,n-k-1)} F=SSE/nk1SSR/k=i=1n(yiy^)2/nk1i=1n(y^iyˉ)2/kF(k,nk1)
确定显著性水平 α \alpha α和分子自由度k、分母自由度n-k-1找出临界值 F α F_\alpha Fα

统计决策

F > F α F\gt{F_\alpha} F>Fα,或P值< α \alpha α,拒绝 H 0 H_0 H0

总结

当我们想要测定多元自变量是否整体与y因变量线性相关时,就需要F检验。 F检验的计算公式都已经给出,在相应的统计软件中只需要输入数据,选中几个选项即可。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值