sklearn中常用数据预处理方法

转载自:http://2hwp.com/2016/02/03/data-preprocessing/

常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍;

1. 标准化(Standardization or Mean Removal and Variance Scaling)

变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。计算方式是将特征值减去均值,除以标准差。

1
sklearn.preprocessing.scale(X)

一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler

1
2
3
scaler = sklearn.preprocessing.StandardScaler().fit(train)
scaler.transform(train)
scaler.transform(test)

实际应用中,需要做特征标准化的常见情景:SVM

2. 最小-最大规范化

最小-最大规范化对原始数据进行线性变换,变换到[0,1]区间(也可以是其他固定最小最大值的区间)

1
2
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
min_max_scaler.fit_transform(X_train)

3.规范化(Normalization)

规范化是将不同变化范围的值映射到相同的固定范围,常见的是[0,1],此时也称为归一化。《机器学习》周志华

将每个样本变换成unit norm。

1
2
X = [[ 1, -1, 2],[ 2, 0, 0], [ 0, 1, -1]]
sklearn.preprocessing.normalize(X, norm='l2')

得到:

1
array([[ 0.40, -0.40, 0.81], [ 1, 0, 0], [ 0, 0.70, -0.70]])

可以发现对于每一个样本都有,0.4^2+0.4^2+0.81^2=1,这就是L2 norm,变换后每个样本的各维特征的平方和为1。类似地,L1 norm则是变换后每个样本的各维特征的绝对值和为1。还有max norm,则是将每个样本的各维特征除以该样本各维特征的最大值。

在度量样本之间相似性时,如果使用的是二次型kernel,需要做Normalization

4. 特征二值化(Binarization)

给定阈值,将特征转换为0/1

1
2
binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)
binarizer.transform(X)

5. 标签二值化(Label binarization)

1
lb = sklearn.preprocessing.LabelBinarizer()

6. 类别特征编码

有时候特征是类别型的,而一些算法的输入必须是数值型,此时需要对其编码。

1
2
3
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
enc.transform([[0, 1, 3]]).toarray()  #array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])

上面这个例子,第一维特征有两种值0和1,用两位去编码。第二维用三位,第三维用四位。

7.标签编码(Label encoding)

1
2
3
4
5
6
le = sklearn.preprocessing.LabelEncoder()  
le.fit([1, 2, 2, 6]) 
le.transform([1, 1, 2, 6])  #array([0, 0, 1, 2]) 
#非数值型转化为数值型
le.fit(["paris", "paris", "tokyo", "amsterdam"])
le.transform(["tokyo", "tokyo", "paris"])  #array([2, 2, 1])

8.特征中含异常值时

1
sklearn.preprocessing.robust_scale

9.生成多项式特征

这个其实涉及到特征工程了,多项式特征/交叉特征。

1
2
poly = sklearn.preprocessing.PolynomialFeatures(2)
poly.fit_transform(X)

原始特征:

转化后:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在scikit-learn(sklearn,有一些常用数据预处理方法可以帮助我们准备和处理数据。以下是一些常见的数据预处理方法: 1. 特征缩放(Feature Scaling):将不同特征的数值范围缩放到相同的尺度,常用方法有标准化(Standardization)和归一化(Normalization)。 - 标准化:使用 `sklearn.preprocessing.StandardScaler` 类可以将特征缩放为均值为0,方差为1的标准正态分布。 - 归一化:使用 `sklearn.preprocessing.MinMaxScaler` 类可以将特征缩放到指定的最小值和最大值之间。 2. 缺失值处理(Handling Missing Values):处理含有缺失值的数据,常用方法有删除缺失值、插补缺失值和使用特定值填充缺失值。 - 删除缺失值:使用 `sklearn.preprocessing.Imputer` 类的 `remove()` 方法可以删除含有缺失值的样本。 - 插补缺失值:使用 `sklearn.preprocessing.Imputer` 类的 `fit()` 和 `transform()` 方法可以对缺失值进行插补,常见的插补方法有均值、位数和众数。 - 填充特定值:使用 `sklearn.preprocessing.Imputer` 类的 `fit()` 和 `transform()` 方法可以使用特定值(如0或者指定的常数)来填充缺失值。 3. 标签编码(Label Encoding):将分类变量转换为数值编码,常用方法是使用 `sklearn.preprocessing.LabelEncoder` 类。 4. 独热编码(One-Hot Encoding):将分类变量转换为二进制编码,常用方法是使用 `sklearn.preprocessing.OneHotEncoder` 类。 5. 特征选择(Feature Selection):选择对目标变量具有较高预测能力的特征,常用方法有方差选择法、递归特征消除法和基于树模型的特征选择法。 - 方差选择法:使用 `sklearn.feature_selection.VarianceThreshold` 类可以通过阈值来选择方差大于指定阈值的特征。 - 递归特征消除法:使用 `sklearn.feature_selection.RFE` 类可以递归地选择特征,根据模型的性能来判断特征的重要性。 - 基于树模型的特征选择法:使用 `sklearn.feature_selection.SelectFromModel` 类可以基于树模型的特征选择方法,通过训练树模型来判断特征的重要性。 这些是scikit-learn常用数据预处理方法,根据具体的问题和数据类型,可以选择合适的预处理方法来处理数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值