三维数组的归一化

二维数组的归一化

最初使用sklearn 的normalize 进行过归一化

from sklearn.preprocessing import normalize
fea_0 = normalize(fea_0, axis=0, norm='l1');
fea_1 = normalize(fea_1, axis=0, norm='l1')

但是其函数的具体解释里面

 Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The data to normalize, element by element.
        scipy.sparse matrices should be in CSR format to avoid an
        un-necessary copy.

shape (n_samples, n_features)只能进行二维数组的归一化
如果进行三维数组的归一化,一个是reshape成二维数组再reshape成三维数组
要么用for循环,讲三维数组切成很多个二维数组进行归一化再拼到一起

三维数组的归一化

import torch.nn.functional as f
f.normalize(input, p=2, dim=2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值