什么是李克特量表

李克特量表,一种由美国社会心理学家李克特于1932年发明的测量工具,常用于深入挖掘特定主题的公众态度。本文详细介绍了李克特量表的定义、适用场景、分析方法及制作流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你有没有参加过这样的调查,在回答某些题目的时候,答案“既不是同意也不是不同意”?

这种问题被称为李克特量表。

李克特量表呈现出的不只是简单的“是/否”的回答,通过李克特量表可以反映出被调查者对某事物或主题的综合态度,因而被广泛用于衡量态度和意见。

李克特量表的定义是什么?

李克特量表是由美国社会心理学家李克特于1932年在原有的总加量表基础上改进而成的。这种量表由一组与某个主题相关的问题或陈述构成,通过计算量表中各题的总分,可以了解人们对该调查主题的综合态度或看法。

李克特量表的尺度形式有多种,我们常见是五级量表,即五个答项,另外还会有七级量表,九级量表或者四级量表等。其范围从一个极端的态度到另一个极端,如“非常可能”到“根本不可能。”或者“非常同意”到“非常不同意”。

李克特量表与普通单选题相比

与只提供两个答案选项的二元问题相比,李克特式问题可以更精确地反馈出被调查者对该问题的态度,从而收集到更加准确的数据。同时大多数统计方法均只能针对量表使用,如信度分析,效度分析,探索性因子分析(Exploratory Factor Analysis,EFA)等。

何时使用李克特量表问卷

调查问题种类繁多,什么情况下使用李克特量表题更适合呢?

李克特量表非常适合深入挖掘一个特定主题,详细地找出人们对这一主题的看法。所以,想获取更多信息的时候就可以使用李克特量表...

了解消费者近期对产品的满意度情况

了解某个人群心理状态和影响因素情况

评估员工对工作的态度情况等

或者需要衡量特定事物情绪或其他问题,并且希望在答案中获得更深层次的详细信息,李克特量表都是不二选择。

如果对这些量表题的基本研究分析还不足以满足你,那么找到更深层次的变量关系,就是下一步需要做的。

李克特量表常用分析方法

除了常规的频数分析、计算平均值等,李克特量表也适用于更多更专业的分析方法:

量表可靠性、有效性分析:信度分析、效度分析

差异关系:方差分析、t检验...

影响关系:相关分析、回归分析...

其他关系:聚类分析、因子分析...

如何制作李克特量表

常见的问卷网站里都提供有很多领域专业的量表问卷模板,需要直接点击复制到自己的问卷中就可以对问卷进行编辑处理了。

模板截图自问卷星

 

同时收集完成的问卷数据也可以直接上传到SPSSAU中进行专业的在线分析。(直接点击在线SPSS分析)

 

数据到上传至SPSSAU,搭配帮助手册及智能分析,就可以快速完成数据分析啦

SPSSAU分析界面

 

系统会针对数据,结合分析方法输出准确规范的智能解读,只需要把题目放进分析框里,点击开始,剩下的就等着自动出结果吧。

 

即使你是看过这篇文章才认识李克特量表这个名字的,也很可能在过去已经使用过它了。现在通过今天的介绍,相信你已经对它足够了解,下一次再设计问卷的时候不妨考虑添加上李克特量表,说不定问卷效果会更好哦。

### 使用R语言进行李克特量表数据分析 #### 数据准备 为了有效地处理和分析李克特量表的数据,在导入数据到R环境之后,通常会先清理并转换这些数据以便于进一步的操作。这可能涉及到将问卷中的文字选项映射成数值型变量。 #### 描述性统计分析 描述性统计对于初步了解收集来的响应情况至关重要。通过计算均值、标准差和其他汇总统计数据来概括样本特征[^1]。 ```r library(likert) data <- read.csv("survey_data.csv") # 假设CSV文件名为'survey_data.csv' items <- data[, c('Q1', 'Q2', 'Q3')] # 提取相关列作为项目列表 item_likert <- likert(items) summary(item_likert) # 显示基本统计信息 plot(item_likert, ordered=FALSE) # 绘制条形图展示各项目的频数分布 ``` #### 可视化表示 利用图形可视化手段可以帮助更直观地解释结果。`likert()` 函数来自同名包 `likert` ,它能够创建专门针对此类评分尺度设计的图表。 #### 探索性因子分析(EFA) 当存在多个相互关联的问题项时,探索性因子分析有助于识别潜在结构或维度。此过程可以揭示哪些题目倾向于一起变动,并据此归纳出几个主要因素。 ```r efa_results <- fa(r = cor(items), nfactors = 3, rotate="varimax") print.psych(efa_results) # 输出旋转后的载荷矩阵 fa.diagram(efa_results) # 展示简化版路径图说明变量间关系 ``` #### 验证性因子分析(CFA) 如果已有理论框架指导,则可通过验证性因子模型检验假设是否成立。这里采用的是 lavaan 软件包来进行 SEM (Structural Equation Modeling) 分析的一部分——CFA。 ```r library(lavaan) model <- ' factor1 =~ Q1 + Q2 + Q3 factor2 =~ Q4 + Q5 + Q6 ' fit <- cfa(model, data=data) summary(fit, fit.measures=TRUE) # 获取拟合优度指数及其他诊断指标 parameterEstimates(fit) # 查看参数估计详情 semPaths(fit, "std", edge.label.cex=.8)# 制作标准化系数路径图 ``` 以上展示了如何运用 R 来执行从基础至高级层面的一系列李克特量表数据分析任务。值得注意的是,具体实现细节可能会依据实际应用场景和个人偏好有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值