目标检测
文章平均质量分 68
目标检测算法分析研究
HySmiley
程序猿的视界
展开
-
yolov6 学习初篇
yolov6 学习初篇原创 2022-07-14 21:02:49 · 476 阅读 · 0 评论 -
目标检测网络
大致分为两类one-stage和two-stage,主要区别是检测目标类别与bounding box回归任务是否分开进行。two-stage代表是rcnn系列(rcnn、fast-rcnn、faster-rcnn)one-stage代表是yolo系列(yolov1-yolov5)、SSD、RetainNet1、one-stage①yolo略②SSD③RetainNet2、two-stage...原创 2021-01-31 23:21:37 · 2062 阅读 · 0 评论 -
yolov3&yolov4&yolov5比较
简单总结了yolov3、v4、v5区别。 yolov3 yolov4 yolov5 输入端 数据增强 Mosaic Mosaic 锚框 anchor anchor 自适应anchor 主干网络(backbone) 网络 Darknet53 CSPDarknet53 Focus+CSP 归一化 BN CMB...原创 2021-01-28 21:48:41 · 10131 阅读 · 0 评论 -
网络结构核心单元
1、resnet残差网络 较深的网络比较浅的网络性能更差。 一个创新的想法:如果什么也没学到,那就比以前更糟:因此提出了identity map(也称为shortcut连接)。 H(x)= x + F(x),F(x)= H(x)-x,称为残差。 ResNet的深度各不相同,从18层到34、50、101到非常深的152层。 不同的快捷方式,如果不更改尺寸,则可以使用身份映射。 但是在实践中,尺寸更改因此会产生“瓶颈”。 (这在基线后记中很流行,因为它可以保存参数。) 残差单元:原创 2021-01-23 22:38:36 · 1515 阅读 · 0 评论 -
Yolov4 cfg解读
1、卷积层[convolutional]batch_normalize=1filters=32size=3stride=1pad=1activation=mish# Downsample[convolutional]batch_normalize=1filters=64size=3stride=2pad=1activation=mish2、Shortcut和Route层shortcut在cfg中的内容都是一样的[shortcut]from=-3ac原创 2021-01-21 21:45:44 · 1594 阅读 · 0 评论 -
Yolov5
先占个坑原创 2021-01-17 23:16:56 · 795 阅读 · 0 评论 -
Yolov4
占坑,参考:https://blog.csdn.net/nan355655600/article/details/106246625 图片来源于:https://blog.csdn.net/nan355655600/article/details/106246625(1)输入端:这里指的创新主要是训练时对输入端的改进,主要包括Mosaic数据增强、cmBN、SAT自对抗训练。(2)BackBone主干网络:将各种新的方式结合起来,包括:CSPD...原创 2021-01-17 22:45:18 · 230 阅读 · 0 评论 -
Yolov3中部分算法及函数
1、k-means2、NMS3、iou4、xyxy2xywh5、xywh2xyxy6、padding-resize7、数据预处理加载8、cfg解析9、model构建10、损失函数11、map原创 2021-01-16 23:01:08 · 1713 阅读 · 1 评论 -
Yolov3训练笔记
1、使用标注工具对图像进行标注:标注的数据是目标的左上和右下的坐标(xmin,ymin,xmax,ymax)2、对已标注的数据进行转换,转换为目标的中心坐标及宽高(xc,yc,wc,hc)并归一化--box xc=(xmax+xmin)/2;yc=(ymax+ymin)/2;wc=xmax-xin;hc=ymax-ymin 归一化:(xc/w,yc/h,wc/w,hc/h) 使用K-means生成9个anchors对应3个尺寸不需要归一化3、加载数据:图像-标签(一一对应).原创 2021-01-13 21:18:47 · 328 阅读 · 2 评论 -
Yolov1训练笔记
1、使用标注工具对图像(W,H)进行标注:标注的数据是目标的左上和右下角坐标(xmin,ymin,xmax,ymax)2、对已标注的数据进行转换,转换为目标的中心坐标及宽高(x,y,w,h)并归一化 转化:x=(xmax+xmin)/2;y=(ymax+ymin)/2;w=xmax-xin;h=ymax-ymin 归一化:(x/W,y/H,w/W,h/H) for file in train_file: sp = file.split('/')[1] .原创 2021-01-13 21:06:27 · 581 阅读 · 0 评论