一、论文
BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
BiSeNet V2将这些空间细节和分类语义分开处理,以实现高精度和高效率的实时语义分割。为此,提出了一个有效的架构,在速度和精度之间进行权衡,称为双边分割网络(BiSeNet V2)。该体系结构包括:(1)一个细节分支,具有宽通道和浅层,用于捕获低层细节并生成高分辨率的特征表示;(2)一个语义分支,通道窄,层次深,获取高层次语义语境。语义分支是轻量级的,因为它减少了通道容量和快速下采样策略。此外,设计了一个引导聚合层来增强相互连接和融合这两种类型的特征表示。此外,还设计了一种增强型训练策略,在不增加任何推理代价的情况下提高分割性能。