Yolov5

一、改进

与yolov3对比,主要进行了下面4方面改进

(1)输入端:Mosaic数据增强、自适应锚框计算
(2)Backbone:Focus+CSPDarknet53
(3)Neck:FPN+PAN
(4)Prediction:GIOU_Loss

二、模块

2.1 自适应锚框

可以选择预先设定的锚框值,也可以在训练过程中,对当前训练集中进行锚框值的计算。

2.2 Focus结构

根据这篇博客解释图像H*W*Channel经过focus结构图像变成H‘*W’*Channel‘,但是三者乘积不变

如:将32*32*3图像经过focus变化后得到16*16*12

 

2.3 CSPDarknet53

CSPDarknet53=CSPNet+Darknet53

CSPNet(Cross Stage Partial,跨阶段局部网络),参考

基本结构形式:

Darknet53结构:

 

CSPDarknet53结构:

2.4 GIOU_Loss

GIOU(Generalized Intersection over Union)

                       

        

          Ac:两个框的最小闭包区域面积(同时包含了预测框和真实框的最小框的面积)

          U:两个框并集区域面积

   

三、yaml文件分析

yolov5有四种结构:yolov5s、yolov5m、yolov5l、yolov5x,主要对Backbone、Neck中网络的深度及宽度进行修改。

详细参考:

https://www.cnblogs.com/E-Dreamer-Blogs/p/13297580.html

https://blog.csdn.net/mary_0830/article/details/107124459

 

四、yolov5实现安全帽佩戴检测

 

 

1、数据集收集并标注

2、搭建yolov5环境,设置参数,模型训练

3、利用pyqt库编写界面

 

 

参考:

深入浅出Yolo系列之Yolov5核心基础知识完整讲解

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HySmiley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值