机器学习算法
HySmiley
程序猿的视界
展开
-
Kmeans
参考;https://www.cnblogs.com/pinard/p/6164214.html原创 2021-01-17 22:43:55 · 135 阅读 · 0 评论 -
机器学习--SVM
在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。原理简介SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就原创 2017-09-03 19:48:32 · 503 阅读 · 1 评论 -
svm+hog 训练,检测手写数字
写数字库:http://code.google.com/p/supplement-of-the-mnist-database-of-handwritten-digits/downloads/list一、 下载训练用的图片下载名字为t10k-images-bmp.rar的那个。别的都是二进制文件,只有这个事bmp格式的。二、用批处理命令处理初始实验数据首先,把图片分文件夹放好。如下:接下来我原创 2017-09-03 22:00:16 · 904 阅读 · 0 评论 -
Adaboost(监督学习)
集成方法在函数模型上等价于一个多层神经网络,两种常见的集成方法为Adaboost模型和RandomTrees模型。其中随机森林可被视为前馈神经网络,而Adaboost模型则等价于一个反馈型多层神经网络。一.引入 对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boostin...转载 2018-03-08 16:08:11 · 1733 阅读 · 0 评论 -
RandomForest随机森林
来源:http://blog.csdn.net/songzitea/article/details/10035757在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个转载 2018-03-08 21:15:16 · 2408 阅读 · 0 评论 -
K-Means(聚类)---无监督学习
1、介绍聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。2、原理对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。如果用数据表达式表示,假设簇划分为(C1,C2,...Ck),则我们的目标是最小化平方误差E: 其中μi是簇Ci的均值向量,有时也称为质心,表达式为:μ...原创 2018-03-05 22:08:50 · 2030 阅读 · 0 评论