一,CVPR/AAAI/ECCV顶会论文/代码
本页面是自己学习时候,觉得有用的一些文章,暂时MARK一下,用得着的地方就再细看。目标检测、 图像分割、人脸识别、 目标跟踪、 三维点云、 图像处理、 图像分类、 姿态估计、 视频分析、 OCR
、GAN、小样本&零样本、 弱监督&无监督、神经网络、 模型压缩、NAS、 视觉常识
1.cvpr20200
1. 压缩方面
-
Deep compression(song han):权重共享,梯度更新
论文解读:https://blog.csdn.net/weixin_36474809/article/details/80643784#%E6%84%8F%E4%B9%89 -
PU-Accelerated Mobile Multi-view Style Transfer
论文地址:https://arxiv.org/abs/2003.00706 -
GPU-Accelerated Mobile Multi-view Style Transfer
论文地址:https://arxiv.org/abs/2003.00706 -
Filter Grafting for Deep Neural Network
论文地址:https://arxiv.org/pdf/2001.05868.pdf
论文解读:https://blog.csdn.net/m0_37400316/article/details/105298538 -
HRank: Filter Pruning using High-Rank Feature Map
github:https://github.com/lmbxmu/HRank
paper:https://128.84.21.199/pdf/2002.10179.pdf
论文讲解:https://blog.csdn.net/m0_37400316/article/details/105488195 -
Out-of-the-box Channel Pruned Networks(基于RL)
论文地址:https://arxiv.org/pdf/2004.14584.pdf -
Training with Quantization Noise for Extreme Model Compression(量化)
论文地址: https://arxiv.org/pdf/2004.07320.pdf
论文分析:https://blog.csdn.net/m0_37400316/article/details/105990601
2. NAS方面
-
A Semi-Supervised Assessor of Neural Architectures
-
CARS: Contunuous Evolution for Efficient Neural Architecture Search
https://arxiv.org/pdf/1909.04977.pdf
开源代码:https://github.com/huawei-noah/CARS
讲解1:https://mp.weixin.qq.com/s/EW09lqADAoyIlvuyuhLY1w -
Rethinking Performance Estimation in Neural Architecture Search(NAS)
由于block wise neural architecture search中真正消耗时间的是performance estimation部分,本文针对 block wise的NAS找到了最优参数,速度更快,且相关度更高
论文:
代码: https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS -
NAS 目标检测 Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
github地址:https://www.ctolib.com/https://github.com/ggjy/HitDet.pytorch
讲解地址:https://blog.csdn.net/weixin_43383972/article/details/105646189
备注:git代码未提供搜索过程 -
NAS 目标检测 NAS-FCOS: Fast Neural Architecture Search for Object Detection
文章地址:https://arxiv.org/pdf/1906.04423.pdf
3. 目标检测
排行榜:目标检测排行榜
-
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
论文地址:https://arxiv.org/abs/1912.02424
代码:https://github.com/sfzhang15/ATSS -
Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
论文地址:https://arxiv.org/abs/1908.01998、 -
CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection
github:https://github.com/KiveeDong/CentripetalNet
4. 人脸识别
- Towards Universal Representation Learning for Deep Face Recognition
论文地址:https://arxiv.org/abs/2002.11841
论文分析:https://blog.csdn.net/m0_37400316/article/details/104900025 - Suppressing Uncertainties for Large-Scale Facial Expression Recognition
论文地址:https://arxiv.org/abs/2002.10392
代码:https://github.com/kaiwang960112/Self-Cure-Network - Face X-ray for More General Face Forgery Detection
论文地址:https://arxiv.org/pdf/1912.13458.pdf - 基于元学习的泛化人脸识别(CVPR2020 oral)
Learning Meta Face Recognition in Unseen Domains
论文地址https://arxiv.org/pdf/2003.07733.pdf
5. 无监督学习
- A Simple Framework for Contrastive Learning of Visual Representation()
论文地址:https://arxiv.org/pdf/2002.05709.pdf
代码:https://github.com/google-research/simclr - Kaiming He的Momentum Contrast for Unsupervised?何凯明的无监督方面2篇
a.Momentum Contrast for Unsupervised Visual Representation Learning
代码地址: https://github.com/facebookresearch/moco
b.Improved Baselines with Momentum Contrastive Learning
6. OCR识别
- ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
论文地址:https://arxiv.org/pdf/2002.10200.pdf
代码地址:https://github.com/aim-uofa/AdelaiDet
7. 图像和谐化
- “DoveNet: Deep Image Harmonization via Domain Verification”
文章地址:https://arxiv.org/pdf/1911.13239.pdf
代码地址:https://github.com/bcmi
8.迁移
- Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations(CVPR oral)
论文地址:https://arxiv.org/abs/2003.12237
代码地址:https://github.com/cuishuhao/BNM
9.视觉常识
- Visual Commonsense R-CN
论文地址:https://arxiv.org/pdf/2002.12204.pdf
代码地址:
10.Gradient 优化
- Gradient Centralization: A New Optimization Technique for Deep Neural Networks
论文地址:https://arxiv.org/pdf/2004.01461.pdf
代码地址:https://github.com/Yonghongwei/Gradient-Centralization
论文解读:https://blog.csdn.net/m0_37400316/article/details/105955193
Reference