文献学习(part93)--Smooth Representation Clustering

本文深入分析了基于表示的聚类方法的分组效应,并提出了强制分组效应条件,以系统地验证表示模型是否具有分组效应。作者提出了一种新的平滑表示(SMR)模型,该模型在模型中显式地强制执行分组效应,并设计了一种新的基于分组效应的亲和度度量,以提高聚类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习笔记,仅供参考,有错必究

期刊:CVPR-2014

作者:Han Hu; Zhouchen Lin; Jianjiang Feng; Jie Zhou



Smooth Representation Clustering


Background

Grouping effect is important for subspace clustering, which should be explicitly enforced in the data self-representation model, rather than implicitly implied by the model as in some prior work.

More recently, many works apply the self-representation idea to compute affinities [1-6], i.e., represent every sample by a linear combination of other samples, which result in state-of-the-art performance. These methods first com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值