【YOLO】自定义训练数据(roboflow版)

本文介绍了如何使用Roboflow进行YOLOv5自定义数据集的训练,包括数据标注、数据集划分、预处理、训练、模型选择、可视化和推理等步骤,详细阐述了从数据上传到模型训练的完整流程。
摘要由CSDN通过智能技术生成

YOLOv5自定义训练数据(roboflow版)

上一章 yolov5部署与推理



前言

本文将介绍Roboflow进行介绍,roboflow可以标注数据集,而且可以对数据集进行不同方式增强,并提供在线训练服务开箱即用、并通过二维码数据训练的过程,带领大家一步步体验自定义数据集的训练过程。


一、Roboflow

Roboflow.com 的核心理念是简化从标注数据到训练模型的过程。它提供了一个流畅的工作流,让开发者可以轻松地上传、组织、标注、转换、增强、管理、评估和部署自己的计算机视觉数据集和模型。支持多种数据格式和模型架构,以及云端、边缘和浏览器等多种部署方式。还提供了一个丰富的模型库,让开发者可以选择合适的预配置模型或自定义 Colab Notebook 来训练自己的模型。

1. 数据标注

打开 Roboflow官网 新建项目,上传准备好的数据集,这里使用二维码数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IDONTCARE8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值