极坐标积分、球坐标积分、柱面积分

本文介绍了在数学和物理问题中常见的三种坐标系——极坐标、柱面坐标和球坐标下的积分表示法,通过公式展示了如何在这些坐标系下进行三维空间的体积或面积计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

极坐标积分:

∫ 0 2 π ∫ 0 R ρ d ρ d θ \int _{0}^{2\pi} \int_0^R \rho d\rho d \theta 02π0Rρdρdθ

柱面坐标:
x = r cos ⁡ θ x = r \cos \theta x=rcosθ

y = r sin ⁡ θ y = r \sin \theta y=rsinθ

z = z z = z z=z

球坐标:

y = r sin ⁡ θ sin ⁡ ϕ y = r \sin \theta \sin \phi y=rsinθsinϕ

x = r sin ⁡ θ cos ⁡ ϕ x = r \sin \theta \cos \phi x=rsinθcosϕ

z = r cos ⁡ θ z = r \cos \theta z=rcosθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值