hdu6290 - 奢侈的旅行 - dijk+堆优化(详细)

思路:

qwq,本菜菜第一次遇到卡spfa的题,据说要用dijk+堆优化.

我们可以发现,若从1走到n经过的是1 2……n点的话,距离是:

log2(\frac{1+a_2}{1})+log2(\frac{1+a_2+a_3}{1+a_2})+...+log2(\frac{1+a_2+...+a_n}{1+a_2+...+a_{n-1}})=log2(1+a_2+...+a_n)

可以看出,到i点的距离只和ai相关,即把ai看做是边的权重

还有一点要注意的是:log会丢失精度,我们先不取log,最后再取

还有就是每次等级都提升ai,那么用u点更新v点时,判断条件是:

log2(\frac{level_u+a[v]}{level_u})    与b的关系

可知levelu=d[u],所以直接用d[u]求就可以啦

(写题的时候多想想,log的性质)

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#include<set>
#include<map>
#include<functional>
using namespace std;
#define ll long long

typedef pair<ll,int>P;
const ll INF=1e17+10;
const int N=100005,mod=1e9+7;
int cnt,head[N],n;
ll d[N];

struct A{
    int to,nex,a,b;
}edge[2*N];

void addEdge(int from,int to,int a,int b){
    edge[cnt].to=to;
    edge[cnt].nex=head[from];
    edge[cnt].a=a;
    edge[cnt].b=b;
    head[from]=cnt++;
}

void dijk(){
    priority_queue<P,vector<P>,greater<P> >Q;
    for(int i=1;i<=n;i++){
        d[i]=INF;
    }
    d[1]=1;
    Q.push(P(d[1],1));
    while(!Q.empty()){
        P p=Q.top();Q.pop();
        int u=p.second;
        if(d[u]<p.first)continue;
        for(int i=head[u];i!=-1;i=edge[i].nex){
            int v=edge[i].to;
            if(log2((d[u]*1.0+edge[i].a*1.0)/(d[u]*1.0))<edge[i].b*1.0){
                continue;
            }
            if(d[v]>d[u]+edge[i].a){
                d[v]=d[u]+edge[i].a;
                Q.push(P(d[v],v));
            }
        }
    }
}

int main(){
    int t,m;
    scanf("%d",&t);
    while(t--){
        memset(head,-1,sizeof(head));
        cnt=0;
        scanf("%d%d",&n,&m);
        while(m--){
            int u,v,a,b;
            scanf("%d%d%d%d",&u,&v,&a,&b);
            addEdge(u,v,a,b);
        }
        dijk();
        if(d[n]==INF){
            printf("-1\n");
        }
        else printf("%lld\n",(ll)log2(d[n]));
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值