Face Model Compression by Distilling Knowledge from Neurons论文初读

该论文提出了一种新的知识蒸馏方法,通过选择具有判别性的神经元来训练学生网络,以实现人脸识别模型的高效压缩。研究发现,教师模型的顶层神经元包含与人脸识别相关的重要信息,但存在非相关性和过拟合问题。通过对神经元的属性判别性定义,论文提出了一种选择方法,使得学生模型在压缩率高达51.6X的同时,推理速度提升了90倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

摘要

引言

方法

  通过选择后的神经元训练学生网络

  神经元的属性判别性定义(关系到上边两个函数如何定义)

  Teacher和Student的网络结构

实验

  测试方法

  压缩T1模型

  压缩模型T2

  压缩集成模型T1

结论


摘要

对KD进行改进,不用soften的标签作为监督信息,而是用softmax前的神经元作为监督信息

利用学到的人脸特征的必备的特性,提出了一种选择和人脸特征相关性高的特征的方法(提出选择的方法)、

用这种选择的方法加上监督信息的改进,模型可以达到51.6X的压缩率,推理时间加快了90倍

引言

  • 之前做法总结

用softmax函数后的概率值作为监督信息;

用softmax之前的零均质化后神经元的值作为监督信息;

有人指出前两种做法都存在极限输出,一个是1一个是正无穷,提出了soften标签作为监督信息;

但是在人脸识别中这些做法不收敛;

  • 本论文的出发点

最后隐藏层的神经元的信息,和softmax后的信息一样多,但是更加的紧凑;

这些信息中含有跟人脸识别不相关的信息,所以需要剔除,剔除的方法来自于以下三个观察现象;

  观察现象一:将神经元看成是人脸属性上的分布代表,有的神经元是身份相关的属性(IA),有的是身份不相关的(NA)

  观察现象二:有一部分神经元是对NA敏感的,还有一些是IA与NA混杂敏感的,这表明神经元不是完全可分解的,而且这是网络对人脸识别任务的过拟合现象

  观察现象三:有些神经元是与这所有的属性无关的,一直被抑制的,这属于噪音

  • 本论文的贡献

高维度的soft标签是难以拟合的,而用更紧凑的监督信息可以帮助更快地收敛;

发现了三个观察现象

提出了一种有效的神经元的选择方法

方法

  通过选择后的神经元训练学生网络

  • 网络损失函数

fi表示teacher网络中选择的神经元

g表示从输入Ii到特征的函数映射

W表示student网络的参数

  • 如何选择出fi

模型压缩是指通过一系列技术手段来减小神经网络模型的尺寸和计算复杂度,以便在资源受限的设备上进行部署和推理。其中,知识蒸馏是一种常用的模型压缩方法之一。知识蒸馏的过程分为两个阶段:原始模型训练和精简模型训练。在原始模型训练阶段,训练一个复杂的"Teacher模型",它可以由多个分别训练的模型集成而成,对输入进行分类并输出相应类别的概率值。在精简模型训练阶段,训练一个参数量较小、模型结构相对简单的"Student模型",它同样可以对输入进行分类并输出相应类别的概率值。通过将"Teacher模型"的知识转移到"Student模型"中,"Student模型"可以在尺寸和计算复杂度上得到压缩,同时保持较高的性能。除了知识蒸馏,模型压缩的其他方法还包括网络剪枝、量化和低秩分解等。另外,神经网络二值化是一种更为极致的模型压缩方法,它将所有的权值用二进制数表示,从而大大减小模型尺寸。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* [模型压缩(Model compression)](https://blog.csdn.net/weixin_38072029/article/details/111357992)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [深度学习网络压缩模型方法总结(model compression)](https://blog.csdn.net/weixin_30617737/article/details/98228382)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值