DarkRank:Accelerating Deep Metric Learning via Cross Sample Similarities论文初读

DarkRank论文介绍了如何通过交叉样本相似性知识加速深度度量学习,提出将“learning to rank”技术应用于深度度量学习,改善模型压缩和加速。在行人再识别、图像检索和图像聚类等任务上,DarkRank方法显示出显著的性能提升,且与现有方法互补。
摘要由CSDN通过智能技术生成

目录

摘要

引言

相关工作

  深度度量学习

  知识迁移

背景

本文的方法

  出发点

  公式

实验

结论


摘要

对于模型压缩和加速,提出了交叉样本相似性知识,这类知识可以从深度度量模型中得到

为了迁移这类知识,本文将“learning to rank” 技巧带入了深度度量学习公式中

在很多度量学习任务(pedestrian re-identification, image retrieval and image clustering)上测试了本文提出的 DarkRank 方法

和存在的方法有互补的作用

引言

传从的知识蒸馏只是针对实例级别的知识,我们将实例间的关系也作为一种只是来学习,这些知识也会编码了teacher网络嵌入空间(个人理解为模型分布)的结构信息

实例间的关系信息与度量学习的目标相符,因为这种关系利用了相似实例的监督信息

如Figure 1右上角所示,经过关系学习后,student网络更好的捕捉了实例间的关系,比如和6更像的0排在3, 4, 5的前边

总结:

  1. 在深度度量学习中,为知识迁移引入了一种新类型的知识--交叉样本相似性
  2. 将这种关系描述为一种在teacher和student网络中的rank匹配的问题,修改了经典的list-wise方法
  3. 在很多度量学习的任务上测试了该方法,重大提升了student网络的性能。并且和存在的方法互补

相关工作

  深度度量学习

传统度量学习方法专注于在欧式空间或者高维核空间中学习马氏距离

深度度量学习方法一般都是用DNN将输入处理成特征,然后在欧式空间中直接比较样本之间的差异

度量学习方法的要以在于分离类间向量,减少类内的方差

分类损失函数和变体可以学习到鲁棒的特征,将不同类别的样本分开,对于样本外的实例,性能是无法保障的,因为在这种方法中是没有显示的度量来引导;这种方法的另一个缺点是,他会将标签一致的

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值