DarkRank:Accelerating Deep Metric Learning via Cross Sample Similarities论文初读

DarkRank论文介绍了如何通过交叉样本相似性知识加速深度度量学习,提出将“learning to rank”技术应用于深度度量学习,改善模型压缩和加速。在行人再识别、图像检索和图像聚类等任务上,DarkRank方法显示出显著的性能提升,且与现有方法互补。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

摘要

引言

相关工作

  深度度量学习

  知识迁移

背景

本文的方法

  出发点

  公式

实验

结论


摘要

对于模型压缩和加速,提出了交叉样本相似性知识,这类知识可以从深度度量模型中得到

为了迁移这类知识,本文将“learning to rank” 技巧带入了深度度量学习公式中

在很多度量学习任务(pedestrian re-identification, image retrieval and image clustering)上测试了本文提出的 DarkRank 方法

和存在的方法有互补的作用

引言

传从的知识蒸馏只是针对实例级别的知识,我们将实例间的关系也作为一种只是来学习,这些知识也会编码了teacher网络嵌入空间(个人理解为模型分布)的结构信息

实例间的关系信息与度量学习的目标相符,因为这种关系利用了相似实例的监督信息

如Figure 1右上角所示,经过关系学习后,student网络更好的捕捉了实例间的关系,比如和6更像的0排在3, 4, 5的前边

总结:

  1. 在深度度量学习中,为知识迁移引入了一种新类型的知识--交叉样本相似性
  2. 将这种关系描述为一种在teacher和student网络中的rank匹配的问题,修改了经典的list-wise方法
  3. 在很多度量学习的任务上测试了该方法,重大提升了student网络的性能。并且和存在的方法互补

相关工作

  深度度量学习

传统度量学习方法专注于在欧式空间或者高维核空间中学习马氏距离

深度度量学习方法一般都是用DNN将输入处理成特征,然后在欧式空间中直接比较样本之间的差异

度量学习方法的要以在于分离类间向量,减少类内的方差

分类损失函数和变体可以学习到鲁棒的特征,将不同类别的样本分开,对于样本外的实例,性能是无法保障的,因为在这种方法中是没有显示的度量来引导;这种方法的另一个缺点是,他会将标签一致的

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值