《Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation 对于视频分类》论文笔记

本文探讨如何通过图蒸馏框架解决自监督学习在视频分类中的局限,提出logits图和表示图进行知识迁移,利用多任务教师模型的知识指导轻量级学生模型的学习,提升视频表示的鲁棒性和效率。
摘要由CSDN通过智能技术生成

北京大学

视频表示学习是提出有区别性的(discriminative)特征,是视频分类的一个重要问题。


自监督学习提取了raw visual数据的结构信息作为监督信息,从而在不实用人工标注的情况下得到transferable representation。具体来说,是机器通过使用self-supervision 而不是labels 解决了一个auxiliary task,这个过程可以得到有用的表示。这个方法的原理是:需要数据的高级语义理解,这forces 自监督模型学习有用的表示。

自监督学习是一种信息密集型的自学习media,其本质上提供了丰富的上下文监督线索,因此在视频处理领域具有很大的潜力。

自监督学习通过解决辅助任务,探索海量数据中隐含的用于特征学习的内在监督信号。但当把这个技术用于视频分类中时,会出现两种局限性:1.只关注单个任务,忽略不同任务task-specific features的互补性。在经验上,在解决不同视频任务时需要不同的特征,这些特征可以相互补充,形成对视频语义的全面理解。2.计算和内存消耗大,不利于应用(使用更深更宽的模型进行表示编码)

自监督学习的重要贡献:回答了怎样有效地评估 没有使用人工标注数据进行训练的模型 的表现。通常在这个领域设计的任务不是直接针对问题的,这些“auxiliary”任务很难保证模型可以学习高级的表示。

过去在单个图像领域的auxiliary tasks包括使用网络来补绘确实大部分区域的图像(Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Con- text encoders: Feature learning by inpainting. In CVPR, pages 2536–2544, 2016.),为灰度图填色(Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.),拼图任务(Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervis

自我监督学习是一种机器学习方法,通过对数据进行合理的预测任务,从中获得有用的表示。与传统的监督学习不同,自我监督学习不需要人工标注的标签来指导训练,而是利用数据自身的信息进行训练。 自我监督学习的基本思想是从未标记的数据中构造有意义的标签,然后将这些标签用作训练数据,以学习有用的特征表示。通过对输入数据进行某种形式的变换或遮挡,可以生成一对相关的样本。其中一个样本称为正样本,另一个则被视为负样本。例如,在图像领域中,可以通过将图像进行旋转、裁剪或遮挡等变换来生成正负样本对。模型的目标是通过学习从一个样本到另一个样本的映射,从而使得正样本对之间的相似度更高,负样本对之间的相似度更低。 自我监督学习在许多任务中都取得了很好的效果。例如,在自然语言处理任务中,可以通过遮挡句子中的某些单词或短语来生成正负样本对,然后通过学习从一个句子到另一个句子的映射来进行训练。在计算机视觉任务中,可以通过图像的旋转、裁剪、遮挡或色彩变换等方式来生成正负样本对。 自我监督学习的优点是不需要人工标注的标签,可以利用大量的未标记数据来进行训练,从而扩大训练数据的规模。此外,自我监督学习还可以通过学习到的特征表示来提高其他任务的性能,如分类、目标检测和语义分割等。 总之,自我监督学习是一种有效的无监督学习方法,通过构造有意义的预测任务,从未标记的数据中学习有用的特征表示。它在各种任务中都有广泛的应用,并具有很高的潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值