Diffusion Model相关论文解析之(六)Unsupervised Surface Anomaly Detection with Diffusion Probabilistic Model

1、摘要

本研究提出了一种基于扩散概率模型的无监督表面异常检测方法 DiffAD,通过改进图像重建技术解决了当前方法的重建质量不足、神经网络异常重建和多重正常模式的问题,在MVTec数据集上取得了最先进的性能表现,特别是在异常定位准确性方面。

2、创新点

1)DiffAD引入了噪声条件嵌入和插值通道,以提高异常检测中的重建质量和多样性。
2)噪声条件嵌入通过噪声扩散潜在表示,区分正常和异常区域,提高重建质量。
3)插值通道生成额外特征通道,增强重建期间的多样性。

3、主要公式

公式(1):The latent diffusion model (LDM)训练目标函数
公式(2)和(3):先生成一个异常样本,编码成潜在向量,再扩散时间步t对应的Cnoisy(带有噪声的条件向量)

公式(4):引入了噪声条件嵌入的The latent diffusion model (LDM)训练目标函数
公式(5):我们将异常输入图像xa和LDM重构的法向量编码后的潜在向量c和zr内插,得到中间状态。重建图像与原始图像之间的正常像素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值