扩散模型(Diffusion Models)是一种生成模型,广泛用于图像生成、文本生成等领域。在异常检测任务中,扩散模型也可以被用来识别和检测异常数据点。该文章对近几年利用扩散模型进行异常检测的文章进行了整理:
2024
1. AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [AAAI 2024]
Github:https://github.com/sjtuplayer/anomalydiffusion
【要点】:AnomalyDiffusion是一种新型的基于扩散的少样本异常生成模型,利用大规模数据集学习的强先验信息来增强生成的真实性和准确性。
【方法】:通过空间异常嵌入和自适应焦点重新加权机制,分别解耦异常信息并重建生成异常图像与异常遮罩的适配器。
【实验】:通过大量实验证明,AnomalyDiffusion在生成真实性和多样性方面名称明显着现有方法,并有效提高了下游异常检测任务的性能。
2. DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [AAAI 2024]
Github:https://github.com/lewandofskee/DiAD
【内容】:本文提出了一种基于扩散模型的多类异常检测框架DiAD,通过像素空间自动编码器、潜在空间语义引导网络及特征空间预训练特征提取器,在保持图像类别和像素结构上实现了缺陷前提下的异常检测。
【方法】:通过构建一个包含像素空间自动编码器、潜在空间语义引导网络(SG网络)和特征空间预提取器的DiAD框架,该方法能够有效重建异常区域并保持原始图像的语义信息。
【实验】:在MVTec-AD和VisA数据集上的实验表明,DiAD方法在多类异常检测上超越了现有技术水平,在MVTec-AD数据集上96.8/52.6(AUROC/AP)的实现了定位和检测性能。
3. Learning Diffusion Models for Multi-View Anomaly Detection [ECCV 2024]
【要点】:本文提出了一种多视角异常检测方法,通过训练一个视角不变的控制网络(ControlNet)以不同视角下的数据,有效实现视角异常检测的精度。
【方法】:作者使用了一种训练策略,该策略通过建立视角不变的控制网络,生成一致的特征图,以减少不同键盘条件的影响,并有效融合RGB颜色外观和3D法线几何信息。
【实验】:在Eyecandies数据集上进行了广泛的消融研究,并展示了现有方法的实验结果,改进了使用DDIM方案来基于扩散特征的记忆库在异常检测推断中的适用性。
4. TransFusion – A Transparency-Based Diffusion Model for Anomaly Detection [ECCV 2024]
Github:https://github.com/MaticFuc/ECCV_TransFusion
【要点】:本论文提出了一种基于缺陷的扩散模型TransFusion,用于表面异常检测,利用缺陷逐渐增加的扩散过程,恢复出准确的异常区域,并保持无异常区域的细节。
【方法】:通过实现不断递增的扩散过程,实现创新的异常检测方法TransFusion。
【实验】:在VisA和MVTec AD数据集上,TransFusion取得了98.5%和99.2%的图像级AUROC,达到了最先进的性能
5. GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [ECCV 2024]
Github:https://github.com/