Diffusion异常检测相关论文及代码整理

扩散模型(Diffusion Models)是一种生成模型,广泛用于图像生成、文本生成等领域。在异常检测任务中,扩散模型也可以被用来识别和检测异常数据点。该文章对近几年利用扩散模型进行异常检测的文章进行了整理:

2024

1. AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [AAAI 2024]

Github:https://github.com/sjtuplayer/anomalydiffusion

【要点】:AnomalyDiffusion是一种新型的基于扩散的少样本异常生成模型,利用大规模数据集学习的强先验信息来增强生成的真实性和准确性。
【方法】:通过空间异常嵌入和自适应焦点重新加权机制,分别解耦异常信息并重建生成异常图像与异常遮罩的适配器。
【实验】:通过大量实验证明,AnomalyDiffusion在生成真实性和多样性方面名称明显着现有方法,并有效提高了下游异常检测任务的性能。
在这里插入图片描述

2. DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [AAAI 2024]

Github:https://github.com/lewandofskee/DiAD
【内容】:本文提出了一种基于扩散模型的多类异常检测框架DiAD,通过像素空间自动编码器、潜在空间语义引导网络及特征空间预训练特征提取器,在保持图像类别和像素结构上实现了缺陷前提下的异常检测。
【方法】:通过构建一个包含像素空间自动编码器、潜在空间语义引导网络(SG网络)和特征空间预提取器的DiAD框架,该方法能够有效重建异常区域并保持原始图像的语义信息。
【实验】:在MVTec-AD和VisA数据集上的实验表明,DiAD方法在多类异常检测上超越了现有技术水平,在MVTec-AD数据集上96.8/52.6(AUROC/AP)的实现了定位和检测性能。在这里插入图片描述

3. Learning Diffusion Models for Multi-View Anomaly Detection [ECCV 2024]

【要点】:本文提出了一种多视角异常检测方法,通过训练一个视角不变的控制网络(ControlNet)以不同视角下的数据,有效实现视角异常检测的精度。
【方法】:作者使用了一种训练策略,该策略通过建立视角不变的控制网络,生成一致的特征图,以减少不同键盘条件的影响,并有效融合RGB颜色外观和3D法线几何信息。
【实验】:在Eyecandies数据集上进行了广泛的消融研究,并展示了现有方法的实验结果,改进了使用DDIM方案来基于扩散特征的记忆库在异常检测推断中的适用性。在这里插入图片描述

4. TransFusion – A Transparency-Based Diffusion Model for Anomaly Detection [ECCV 2024]

Github:https://github.com/MaticFuc/ECCV_TransFusion
【要点】:本论文提出了一种基于缺陷的扩散模型TransFusion,用于表面异常检测,利用缺陷逐渐增加的扩散过程,恢复出准确的异常区域,并保持无异常区域的细节。
【方法】:通过实现不断递增的扩散过程,实现创新的异常检测方法TransFusion。
【实验】:在VisA和MVTec AD数据集上,TransFusion取得了98.5%和99.2%的图像级AUROC,达到了最先进的性能
在这里插入图片描述

5. GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [ECCV 2024]

Github:https://github.com/

### 扩散模型在异常检测中的应用与优化 #### 使用扩散模型进行异常检测的基础原理 扩散模型通过逐步向数据添加噪声并学习逆转这一过程来建模复杂的数据分布。这种特性使得扩散模型能够捕捉到正常样本的特征模式,从而识别偏离这些模式的异常情况[^1]。 #### 当前最佳实践方法 为了提升扩散模型在异常检测方面的表现,可以采用以下几种策略: - **增强训练集多样性**:增加更多样化的正态样本有助于更好地定义正常的边界条件。这可以通过收集更广泛的真实世界场景下的数据实现。 - **引入对抗损失函数**:结合GANs的思想,在生成过程中加入对抗性的惩罚项,迫使模型更加精确地区分真实和伪造的例子,进而提高对于异常点敏感度[^2]。 - **多尺度分析框架构建**:设计一个多分辨率或多尺度的学习架构,允许网络在同一时间处理不同层次的信息抽象程度。这种方法不仅提高了计算效率,而且增强了对局部细节变化以及全局结构破坏两种类型的异常事件响应能力。 ```python import torch.nn as nn class MultiScaleDiffusionModel(nn.Module): def __init__(self, scales=[1, 2, 4]): super(MultiScaleDiffusionModel, self).__init__() self.scales = scales # Define layers for each scale level here... def forward(self, x): outputs = [] for s in self.scales: scaled_x = F.interpolate(x, scale_factor=1/s) output_at_scale_s = ... # Process input at this scale outputs.append(output_at_scale_s) final_output = sum(outputs)/len(scales) # Average across all scales return final_output ``` #### 最新研究进展概述 最新的研究表明,融合先验知识(如领域特定规则或专家意见)进入扩散模型的设计中可以获得更好的效果。例如,在医学影像诊断任务里,利用解剖学上的常识指导模型关注那些最有可能发生病变的位置;而在工业监控系统中,则可以根据设备运行参数的历史记录设定合理的阈值范围作为辅助判断依据[^3]。 此外,随着硬件加速技术和分布式计算平台的发展,大规模部署高效的在线异常监测解决方案成为可能。AI系统的介入也促进了医疗资源的有效配置,进一步提升了服务质量和应急反应速度[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值