最近遇到的一个算法题,在这里记录一下找到的答案。
完整题目:
手里给一副手牌,数字从0-9,有r(红色),g(绿色),b(蓝色),y(黄色)四种颜色,出牌规则为每次打出的牌必须跟上一张的数字或者颜色相同,否则不能连续出牌。
例如,手中有红色3,那么下次出牌可以出任意花色的3,或任意数字的红色牌,直至手中所有牌与上次出牌花色和数字都不匹配为止。
求可打出牌的最大数量。
输入第一行为手中牌面数字n (1<=n<=9),如
[1, 4, 3, 4, 5, 4]
输入第二行为手中第一行输入的牌面所对应的花色(r,g,b,y四种颜色表示),如
['r', 'y', 'b', 'b', 'r', 'y']
第一行与第二行输入长度相等,且位置一一对应,手牌数量最大为10张,输出最大出牌数量。
示例说明:
如果打(1, r)-> (5, r),那么能打两张。
如果打(4, y) -> (4, y)-> (4, b) ->(3, b),那么能打四张。
# 回溯
def maxPoke(nums, colors):
len_ = len(nums)
# 记录用过的牌
vis = [False] * len_
def dfs(num, color):
max_ = 0
# 枚举获取每张牌作为第1 ~ len次出时可以打出的最大数量
for i in range(len_):
if vis[i]:
continue
n, c = nums[i], colors[i]
# -1表示当前正在寻找第一张牌,任何花色和数字都可以
if n == num or c == color or num == -1:
vis[i] = True
max_ = max(1 + dfs(n, c), max_)
vis[i] = False
return max_
return dfs(-1, -1)
print(maxPoke(nums=[1, 4, 3, 4, 5, 4], colors=['r', 'y', 'b', 'b', 'r', 'y'])) # 4