边缘计算在手术机器人中的应用学习日志
理论
5G
5G无线电支持超高可靠性和低延迟:
- 更短的传输时间间隔(TTI):更短的处理时间给了多余的时间重新发送失败的信息。
- 数据包处理管道化:为了减少延时,传输可以在数据包完全编码之前开始,解码可以在完全收到完整的数据包之前开始。
- 无线电资源控制(RRC)连接的非活动状态:降低状态转换、数据传输的延迟,并减少能源消耗。
- 大规模MIMO(mMIMO):与LTE1800的覆盖范围相同,但5G提供更好的频谱效率,在3.5GHz时达到1Gb/s,本地容量极大(10Gb/s)。
- 支持更大的带宽:更高的数据速率(包括峰值和平均值),比载波聚合更有效。
对于URLLC来说:
- 通过本地GW访问本地服务:NG核心控制功能向本地GW发送流量引导规则,由GW执行并将流量集中路由到边缘的应用。
- MEC平台有可能要求某些流量在本地被引导:灵活的上行平面流量路由通过中央/本地上行功能、UL分类器将流量路由到本地应用,IPv6多址允许同时传输到本地和中央应用服务器
- 支持网络分片:服务协调器创建专用的核心网络实例,执行无线电资源管理策略,并利用软件定义网络(SDN)在传输网络层创建优先连接,从而将WTS流量与其他用户的通信隔离,并确保在需要时提供充足的端到端(E2E)资源。
软件定义网络(SDN)包括控制数据面的分离以及可编程的网络,通过将所有的控制任务推给一个集中的控制器完成网络配置和管理。SDN通过控制器中的可编程接口(如Openflow、ForCES和PCEP)加快了新服务的部署并降低了运营成本。虚拟化指的是网络虚拟化(NV)和网络功能虚拟化(NFV)。NV允许多个虚拟网络在同一网络基础设施上运行,这使得多个网络运营商能够在共享基础设施中共存。NFV指的是在通用计算/存储平台上运行的软件中实现网络功能。在移动网络中,随着从硬件到软件设备的迁移,NFV不仅能降低设备成本(CAPEX),还能降低运营成本(OPEX)。SDN和NFV是5G蜂窝网络架构的关键技术。
边缘计算
云计算模式的主要限制之一是实时响应,因为用户对云的请求在到达云服务器之前必须穿越多跳,就会增加响应时间,可以通过边缘计算(fog计算、微型数据中心(MDC)、Cloudlet和移动边缘计算(MEC))来应对这些挑战,提供实时响应和近端云服务。雾计算是一个将云计算带到终端用户附近的平台,为网络边缘和网络设备配备虚拟化服务,在处理和存储方面同时提供网络服务。MEC是由欧洲电信标准协会(ETSI)发起的边缘技术,是4G和5G蜂窝网络中的无线接入网络(RAN),通过在基站中配置计算和处理资源来提供边缘计算。由微软发起的MDC是小规模版本的数据中心,将所提供的云服务延伸到终端用户附近。卡内基梅隆大学(CMU)提出的cloudlet概念与MDC类似,作为小型的虚拟化数据中心,以分布式的方式为靠近边缘的用户服务。边缘计算通过将网络和计算资源带到靠近终端用户的边缘设备上,增强了云计算。边缘计算是一个由接入点、交换机、边缘路由器、服务器和终端用户设备组成的异构基础设施,它提供了一个进入服务提供商核心网络的入口,它拥有足够的计算和存储资源以满足终端用户的实时和资源密集型需求。与云计算相比,边缘计算被本地化到部署边缘的区域,提供了低延迟并减少了数据流量。此外,边缘计算也可以用来加密用户数据,而不是将原始数据上传到云端,从而确保用户数据在中间环节的安全和隐私。
移动边缘计算(MEC)服务器可以部署在多个地点,如LTE宏基站(eNodeB)站点、RRH和C-RAN的BBU池,因为它们已经配备了处理和存储单元。因此,大部分的处理可以在RAN内完成,减轻核心网络的带宽压力,从而缩短延迟。例如,预先缓存的电子医疗记录和相关的历史手术数据,如机器人手臂的运动记录,可以存储在数据中心的BBU池中。利用基于深度学习和模式识别算法的人工智能引擎,MEC可以处理三维视频和图像,利用可扩展的视频编码突出相关特征,并对诊断结果的图像进行注释,从而最大限度地减少所需的通信资源。这里的一个开放性问题是如何在计算延迟和通信延迟之间取得平衡。
此外,MEC中的无线电分析应用可以更好地估计网络中的信道质量和延迟变化。这些信息可以被用来优化应用层面的编码、信道编码,减少视频停顿的发生,实现灵活的资源分配。由于基础设施和运营成本的原因,MEC的处理能力和存储量要比传统的云计算小几个数量级。因此,MEC中的计算任务分割、卸载和内容缓存十分重要。边缘计算可以实现快速的机器对机器的通信或机器对人的互动。在边缘计算环境中,人与机器人的互动是数据流的主要来源,在这里可以应用最先进的资源分配或计算加载