工业机器人控制学习笔记(1)

工业机器人控制学习笔记(1)

1.空间运动

(1)质点运动

质点p在空间中的运动可由三个分别垂直于x,y,z轴的状态向量完整描述
因此,假设空间中存在n个质点,那么便需要3n个状态向量来描述

(2)自由度

概念:

力学系统中独立坐标的个数,所谓独立坐标,指的是变量之间并无联系,独立变化不受影响

刚体:

是一种有限尺寸可以忽略形变的物体
刚体的自由度为六个
解释如下:
首先,刚体的重心可视为一个质点,具备三个平动自由度
其次,由于刚体可围绕与之相关的三个独立轴进行独立转动,又具备三个转动自由度

约束:

一般情况下,在由多个质点组成的系统中都存在约束,
分类
1完整约束
2不完整约束

2.轨迹规划

变分法

在这里插入图片描述
欧拉-拉格朗日方程
提供了求泛函的平稳值的一个方法,其最初的想法是初等微积分理论中的“可导的极值点一定是稳定点(临界点)”。当能量泛函包含微分时,用变分方法推导其证明过程,简单地说,假设当前的函数(即真实解)已知,那么这个解必然使能量泛函取全局最小值。
在这里插入图片描述
推导如下
假设f0(x)就是符合条件的最优函数。现在,将f0(x) + k(x)定义为是有别于最优曲线f0(x)的其它函数,其中k(x)可以是任意函数。如果如下定义f(x, k)
在这里插入图片描述
因为f0(x)是最优函数,此时A[f0]有最小值,则一定有:
在这里插入图片描述
由于任意函数k(x)不好定义,为了能够使k(x)任意小,令:
在这里插入图片描述
η是任意函数,当ε取极小值时,可以看作是对f0(x)的轻微扰动;还需要额外定义的是,在端点处是不能扰动的,即εη(A) = εη(B) = 0,这对于任意ε都适用,所以η(A) = η(B) = 0。注意ε是对f0(x)的扰动程度,εη(x)是扰动后的增量,εη(x) = 0说明扰动为0,也就是无扰动,f(x) + εη(x)才是扰动后的函数。
在这里插入图片描述

由于假设f0(x)是最优函数,所以可以将f0(x)看作已经确定的函数,如果再将任意函数η(x)看作一个确定的函数,那么A可以看成ε的函数,若A’ = 0,函数存在极值,这已经变成了极值点的求解:

在这里插入图片描述

根据链式法则

在这里插入图片描述

根据分部积分

在这里插入图片描述

η(x) = 0说明对f0(x)无扰动时,A能取得极值,但它对f0的具体形式无任何帮助;因此最优函数f0(x)的具体形式由第一个解确定:

在这里插入图片描述
  这就是欧拉-拉格朗日方程(Euler-Lagrage equation),可以帮助我们求解泛函下的极值,这里L是已知的。它的最初的思想来源于微积分中“可导的极值点一定是稳定点(临界点)”。它的思想在于:假定当前泛函的解已知,那么这个解必然使得泛函取得最小值(假定是最小值)。换言之,只要在泛函中加入任何扰动,都会使泛函的值变大,所以扰动为0的时候,就是泛函关于扰动的一个极小值。扰动用一个很小的数ε乘上一个连续函数η(x)。当ε趋近于0,意味着扰动也趋近于0。所以当扰动为0时,泛函对扰动程度的导数也为0。这就非常巧妙的把对函数求导的问题转化成了一个单变量求导问题。

需要注意的是,欧拉-拉格朗日方程的前提条件是端点不会扰动,也就是说需要固定两个端点
综上为欧拉方程的一个简单推导,只选取了较少的参数,所得到的轨迹还可继续优化

最短距离

分类

片描述

多目标点规划

核心:将轨迹分为多段,并保证平滑过渡

  • 1
    点赞
  • 0
    评论
  • 3
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页

打赏作者

lulall

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值