音频滤波笔记之小波阈值滤波器

小波阈值滤波算法

小波阈值滤波原理

对信号进行小波分解时,系数分解为近似小波系数(信号的低频成分)和细节小波系数(信号的高频成分)。
小波阈值去噪方法认为,信号中的噪声存在于高频成分之中,因此,对于细节小波系数作阈值收缩处理,再将个小波系数进行组合重构就得到去噪后的信号。

小波阀值去噪的基本思想是将信号通过小波变换(采用Mallat算法)后,信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。

从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程图如下所示:
在这里插入图片描述
S ( k ) = f ( k ) + ε ∗ e ( k ) , k = 0 , 1...... n − 1 S(k) = f(k) + \varepsilon * e(k), k = 0,1......n-1 S(k)=f(k)+εe(k),k=0,1......n1

其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。

假设,e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,我们对 s(k)信号进行小波分解的时候,则噪声部分通常包含在HL、LH、HH中,如下图所示,只要对HL、LH、HH作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

在这里插入图片描述

我们可以看到,小波去噪的原理是比较简单类,类似以往我们常见的低通滤波器的方法,但是由于小波去找保留了特征提取的部分,所以性能上是优于传统的去噪方法的。

小波去噪的基本方法

一般来说, 一维信号的降噪过程可以分为 3个步骤:

  • 信号的小波分解: 选择一个小波并确定一个小波分解的层次N,然后对信号进行N层小波分解计算。
  • 小波分解高频系数的阈值量化: 对第1层到第N层的每一层高频系数(三个方向), 选择一个阈值进行阈值量化处理࿰
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值