STAR-CCM+如何判断网格质量

本文详细介绍了STAR-CCM+中用于评价网格质量的五个关键指标:面有效性(FaceQuality)、体积变化(VolumeChange)、网格单元偏斜角(SkewnessAngle)、Chevron质量指示器以及最小二乘质量。这些指标帮助确保网格几何符合物理预期,提高模拟的精确性和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前STAR-CCM+ 中可用于评价网格质量的方式包括:

  • 面有效性

  • 体积变化

  • 网格单元偏斜角

  • Chevron 质量指示器

  • 最小二乘质量

一、面有效性(Face Quality)

       面有效性(Face Quality)是评估网格质量的一个重要指标,它衡量的是网格单元表面法向量相对于其关联单元形心的准确性。面有效性有助于确保网格的几何特性符合物理现象的预期,从而提高模拟的准确性和可靠性。

图片

        在质量较高的网格单元中,面的法向量指向外部,远离网格单元形心。在面有效性较差的网格单元中,一个或多个面法向量指向内部,朝向网格单元形心。当面有效性为 1.0 时,意味着所有面法向量均正确指向远离网格单元形心的方向。当值低于 1.0 时,意味着某些网格单元面法向指向内部,朝向网格单元形心,这指示存在某种形式的凹陷。当值低于 0.5 时,表示负体积网格单元。面有效性(Face Quality)是评估网格质量的一个重要指标,它衡量的是网格单元表面法向量相对于其关联单元形心的准确性。面有效性有助于确保网格的几何特性符合物理现象的预期,从而提高模拟的准确性和可靠性。

         在划分网格过程中面网格质量推荐大于0.9,允许少部分网格质量位于0.8~0.9之间,但大部分位于0.8以下是不合理的。

图片

图片

二、体积变化(Volume Change)

        网格体积变化描述了一个网格单元体积与其最大相邻单元体积之比。

图片

        理想情况下,这个比率应该接近1,表示网格单元的体积在整个模拟区域内分布均匀,没有显著的局部膨胀或压缩。如果体积变化过大,可能会导致数值计算的误差增大,影响模拟结果的可靠性。

        在使用STAR-CCM+计算时,推荐大于1e-3,允许少部分体积变化值位于1e-3~1e-4之间,大部分位于1e-4以下是不合理的。

图片

三、网格单元偏斜角(Skewness Angle

        网格单元偏斜角(Skewness Angle)是衡量网格单元形状不规则性的一个指标。它表示的是网格单元中心面形心到任意顶点所形成的向量与面法线之间的角度。理想情况下,网格偏斜角度应尽可能小,接近于0度时,表示网格单元的形状规则,与理论的形状(如立方体或长方体)接近。当偏斜角较大时,表明网格单元形状扭曲,可能会影响计算结果的准确性和稳定性。

图片

        偏斜角大于85度的网格单元被视为质量很差的网格单元。当偏斜角大于或等于90度(可能出现在凹网格单元中,其中两个网格单元的形心均位于边界面的同一侧)时,通常会导致出现求解器收敛问题。之所以会出现问题,是因为已传输标量变量的扩散项在分母中包含点积 ,夹角为零时,此点积为零,在这种情况下,扩散计算的精度和稳定性均会降低。

图片

图片

图片

四、Chevron 质量指示器        

        在STAR-CCM+中,Chevron 质量指示器可以用来评估网格单元的非正交性,即网格单元面之间的角度偏差程度。

        Chevron 质量指示器的工作原理是通过在网格单元的每个面上生成一个类似于“V”字形的图案,这个图案的形状和大小可以反映出该面相对于其他面的非正交程度。理想情况下,网格单元的各个面应该是相互正交的,这样的网格单元在进行物理量传递和计算时更为稳定和准确。如果网格单元的某些面之间存在较大的角度偏差,即非正交性较强,那么这些面的Chevron图案将会呈现出较为扁平或扭曲的形状,从而提示该网格单元可能存在质量问题。

图片

        Chevron 质量范数 c 可用于确定网格单元能否被分类为 Chevron 网格单元:

图片

其中:

  • dp 为从面中心投影到连接网格单元中心的线的矢量。

  • dv 为从面顶点到面中心的矢量

  • 计算 Chevron 质量范数时,max 函数将遍取所有面节点。

可使用矢量 dp 来计算 Chevron 质量范数:

图片

其中:

  • Af 为面网格面积矢量。

  • dx 为从面中心到网格单元中心的矢量。

  • ds 为连接两个网格单元中心的矢量。

        在实际应用中,可以通过观察Chevron 质量指示器的图案变化来判断网格单元的质量。如果大部分网格单元的Chevron图案呈现出较为尖锐的“V”字形,这表明网格质量较好;反之,如果许多网格单元的Chevron图案呈现出扁平或扭曲的形状,这可能意味着需要对这些区域的网格进行优化或重新划分,以提高整体的网格质量。

五、最小二乘质量

        此场函数是网格单元质量的指示器,通过比较网格单元的实际形状与其理想形状之间的偏差来评估网格质量。

图片

该场函数值以对称矩阵的最大特征值比率和最小特征值比率之比为基础:

图片

其中:

  • dsi 表示从网格单元到相邻形心的矢量。

        场函数使用雅可比变换来计算特征值比率,完美网格单元的最小二乘质量为 1,低于 1.0e-3 的网格被视为质量较差的网格单元。

### STAR-CCM+ 网格划分教程和最佳实践 #### 3.1 网格划分概述 在STAR-CCM+, 网格划分是计算流体力学(CFD)仿真中的重要环节之一。网格质量直接影响仿真的精度和效率。通过合理的网格设置, 可以提高求解速度并获得更精确的结果[^2]。 #### 3.2 准备阶段 启动STAR-CCM+之后,在创建新项目时需导入几何模型文件。确保所选单位制适合当前工程需求,并检查几何结构是否存在潜在问题,比如过薄壁面或锐角区域等可能影响后续操作的因素。 #### 3.3 创建初始网格 进入Meshing模块后可以选择不同类型的单元用于构建基础网格框架。对于复杂形状建议采用非结构化六面体/四面体混合形式;而对于简单规则外形则可以考虑全六面体方案来减少节点数量从而加快收敛过程。 #### 3.4 自动与手动调整相结合 利用软件内置自动生成功能快速生成初步网格布局,再根据具体应用场景对手动编辑特定部位细节部分做精细化处理。例如增加近壁区层数、控制膨胀比率以及局部加密高梯度变化处等等措施均有助于提升最终解决方案的质量。 #### 3.5 验证与优化 完成上述步骤后应仔细审查整个域内所有元素属性是否满足预期标准(如雅可比因子大于0.8),必要时重复修改直至达到满意效果为止。此外还可以借助可视化工具直观评估整体分布情况以便进一步改进策略。 ```python # Python代码示例:展示如何使用Python API实现某些自动化任务(此段仅为示意并非实际可用代码) def refine_mesh_near_walls(wall_regions): """针对指定墙壁区域细化附近网格""" for region in wall_regions: # 增加边界层厚度 add_boundary_layer(region) # 设置增长率参数 set_growth_rate(region, value=1.2) refine_mesh_near_walls(['inlet_wall', 'outlet_wall']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值