李宏毅机器学习——学习笔记(18)Support Vector Machine(SVM)

Hinge Loss + Kernel Method 就是SVM。

hinge loss

进行二分类的过程中,采取sigmoid和cross entropy的原因是gradient descent的梯度很大,利于参数调整。
在这里插入图片描述
Hinge loss function就是:在这里插入图片描述
图中的紫色段,hinge loss 和cross entropy的差别在于对于预测准确后的样本的奖赏程度。
在这里插入图片描述

Linear SVM:hinge loss在某些位置是不可微分的,但是类似于relu函数

在这里插入图片描述
Linear SVM进行gradient descent
在这里插入图片描述
另外一种形式的SVM:两种形式可以互相进行转化,由于是最小化loss function,所以红色方框中两个式子是一致的。

在这里插入图片描述
由于w每次都是加减data point的linear combination,所以当我们最终w的值就是数据点的linear combination。如果使用hinge loss的话,偏微分的值可能为0,也就是说某些数据点不会加入到w中。只有某些数据点上对w才有影响,这些数据点可以作为support vector

在这里插入图片描述
通过对w用x进行表示,可以对f(x)的函数形式进行更改,最终可以表示成Dual representation的形式。
在这里插入图片描述
用kernel函数代替内积,在训练过程中,只需要kernel值就可以优化,求解a的值
在这里插入图片描述
kernel函数,x变换成Φ(x)以后进行的操作,可以先在x上进行该操作,在进行Φ(x)操作即可。
在这里插入图片描述直接计算Kernel(x,z),比“特征转换+内积”的速度要快的多
在这里插入图片描述
基于RBF(径向基函数)的核函数,能够将样本映射到无限维的空间中。

在这里插入图片描述
Sigmoid Kernel:sigmoid kernel函数类似于一层隐含层的,每个神经网络的权重就是一个数据点。
在这里插入图片描述
不需要考虑x、z的feature,当x是结构化数据的时候,很难定义x的特征转换函数。
在这里插入图片描述
SVM的相关方法:
在这里插入图片描述
Deep Learning VS SVM

  • Deep Learning的前几层可以看成是feature transformation,最后一层是linear classifier。
  • SVM基于Kernel function将input映射到feature space中。

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值