基于Unet++在kaggle—2018dsb数据集上实现图像分割

1. 作者介绍

郭冠群,男,西安工程大学电子信息学院,2023级研究生
研究方向:机器视觉与人工智能
电子邮件:1347418097@qq.com

路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:2063079527@qq.com

2. 理论知识介绍

2.1 Unet++模型介绍

  • Unet
    语义分割是将图像划分为有意义的区域,并标注每个区域所属的类别。语义分割网络是实现这一任务的工具,其中Unet模型通过跨阶段融合不同尺寸的特征图来实现这一目标。
    在这里插入图片描述
  • 特征图融合
    特征图融合的目的是结合浅层和深层特征,提升分割效果。浅层特征能提取图像的简单特征如边界和颜色,而深层特征提取图像的深层次语义信息。多个特征图的融合能够弥补单一特征层次信息的不足。
  • Unet++
    Unet++通过嵌套的密集跳过路径连接编码器和解码器子网络,减少了特征映射之间的语义差距,从而提高了分割效果。在测试阶段,由于输入图像只进行前向传播,被剪掉的部分对前面输出没有影响,而在训练阶段,这些部分会帮助其他部分进行权重更新。
    在这里插入图片描述

3. 实验过程

3.1 数据集介绍

  • 数据集来源
    Kaggle—2018dsb数据集来自于2018年数据科学碗,其任务是从显微镜图像中分割细胞核。这对于推动医学发现具有重要意义,特别是在病理学、癌症研究和其他生命科学领域。
    在这里插入图片描述
  • 下载途径

百度网盘 链接:https://pan.baidu.com/s/1GXtZ0clE12oZKooF61siKQ
提取码:tsh7

  • 数据集内容
    数据集包含显微镜下细胞图像及其对应的分割掩码。训练集用于训练模型,测试集用于评估模型性能。
    在这里插入图片描述

3.2 代码实现

  1. train.py
import os
import argparse
from glob import glob
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from tqdm import tqdm
import albumentations as albu
from albumentations.core.composition import Compose, OneOf
from sklearn.model_selection import train_test_split
import archs
import losses
from dataset import CustomDataset
from metrics import iou_score
from utils import AverageMeter, str2bool

class Config:
    @staticmethod
    def from_cmdline():
        parser = argparse.ArgumentParser(description='Training configuration')
        parser.add_argument('--name', default=None, help='Model name: (default: arch+timestamp)')
        parser.add_argument('--epochs', type=int, default=100, help='Number of total epochs to run')
        parser.add_argument('-b', '--batch_size', type=int, default=8, help='Mini-batch size (default: 16)')
        parser.add_argument('--arch', default='NestedUNet', choices=archs.__all__, help='Model architecture')
        parser.add_argument('--deep_supervision', type=str2bool, default=False, help='Use deep supervision if True')
        parser.add_argument('--input_channels', type=int, default=3, help='Number of input channels')
        parser.add_argument('--num_classes', type=int, default=1, help='Number of classes')
        parser.add_argument('--input_w', type=int, default=96, help='Input image width')
        parser.add_argument('--input_h', type=int, default=96, help='Input image height')
        parser.add_argument('--loss', default='BCEDiceLoss', choices=losses.__all__, help='Loss function')
        parser.add_argument('--dataset', default='dsb2018_96', help='Dataset name')
        parser.add_argument('--img_ext', default='.png', help='Image file extension')
        parser.add_argument('--mask_ext', default='.png', help='Mask file extension')
        parser.add_argument('--optimizer', default='SGD', choices=['Adam', 'SGD'], help='Optimizer type')
        parser.add_argument('--lr', '--learning_rate', type=float, default=1e-3, help='Initial learning rate')
        parser.add_argument('--momentum', type=float, default=0.9, help='Optimizer momentum')
        parser.add_argument('--weight_decay', type=float, default=1e-4, help='Weight decay rate')
        parser.add_argument('--nesterov', type=str2bool, default=False, help='Nesterov momentum')
        parser.add_argument('--scheduler', default='CosineAnnealingLR',
                            choices=['CosineAnnealingLR', 'ReduceLROnPlateau', 'MultiStepLR', 'ConstantLR'],
                            help='Learning rate scheduler')
        parser.add_argument('--min_lr', type=float, default=1e-5, help='Minimum learning rate')
        parser.add_argument('--factor', type=float, default=0.1, help='Factor for ReduceLROnPlateau')
        parser.add_argument('--patience', type=int, default=2, help='Patience for ReduceLROnPlateau')
        parser.add_argument('--milestones', type=str, default='1,2', help='Milestones for MultiStepLR')
        parser.add_argument('--gamma', type=float, default=2 / 3, help='Gamma for MultiStepLR')
        parser.add_argument('--early_stopping', type=int, default=-1, help='Early stopping threshold')
        parser.add_argument('--num_workers', type=int, default=0, help='Number of data loading workers')

        args = parser.parse_args()
        return vars(args)


class ModelManager:
    def __init__(self, config):
        self.config = config
        self.model = self.create_model().cuda()
        self.criterion = self.create_criterion().cuda()
        self.optimizer = self.create_optimizer()
        self.scheduler = self.create_scheduler()

    def create_model(self):
        return archs.__dict__[self.config['arch']](
            self.config['num_classes'],
            self.config['input_channels'],
            self.config['deep_supervision']
        )

    def create_criterion(self):
        if self.config['loss'] == 'BCEWithLogitsLoss':
            return nn.BCEWithLogitsLoss()
        else:
            return losses.__dict__[self.config['loss']]()

    def create_optimizer(self):
        params = filter(lambda p: p.requires_grad, self.model.parameters())
        if self.config['optimizer'] == 'Adam':
            return optim.Adam(params, lr=self.config['lr'], weight_decay=self.config['weight_decay'])
        elif self.config['optimizer'] == 'SGD':
            return optim.SGD(params, lr=self.config['lr'], momentum=self.config['momentum'],
                             nesterov=self.config['nesterov'], weight_decay=self.config['weight_decay'])

    def create_scheduler(self):
        if self.config['scheduler'] == 'CosineAnnealingLR':
      
好的,下面是一份关于神经网络的医学细胞核图像分割算法与实现的简单介绍。 细胞核图像分割是医学图像处理中的一项重要任务,可以帮助医生更准确地诊断疾病。神经网络在医学图像分割任务中具有很强的优势,因为神经网络可以自动学习特征,并且可以处理大量的数据。 下面我们将介绍一种使用卷积神经网络进行医学细胞核图像分割的算法和实现。 算法步骤如下: 1. 数据预处理:将原始细胞核图像进行预处理,包括调整图像大小、裁剪、增强等操作,以便于神经网络的训练和测试。 2. 神经网络设计:设计一个卷积神经网络,包括卷积层、池化层、全连接层等,以便于对细胞核图像进行特征提取和分类。 3. 神经网络训练:使用预处理后的数据集对神经网络进行训练,以便于神经网络学习如何对细胞核图像进行分割。 4. 神经网络测试:使用测试数据集对神经网络进行测试,评估神经网络的性能和准确度。 下面是一个简单的代码实现示例: ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten # 数据预处理 # ... # 神经网络设计 model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(img_width, img_height, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(256, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(64, activation='relu'), Dense(1, activation='sigmoid') ]) # 神经网络训练 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) # 神经网络测试 test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) ``` 在这个示例中,我们使用了一个简单的卷积神经网络,包括四个卷积层和两个全连接层,用于对细胞核图像进行分割。我们使用了Adam优化器和交叉熵损失函数进行训练,并且在测试数据集上评估了模型的准确度。 需要注意的是,这只是一个简单的示例,实际上在医学图像分割任务中,需要根据具体情况设计更加复杂的神经网络模型,如UNet、VNet等。同时,还需要结合实际数据集进行参数调整和优化,以提高分割的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值