RNN(Recurrent Neural Network)循环神经网络

**RNN(Recurrent Neural Network)
  在传统的全连接神经网络中,从输入层到隐藏层再到输出层,每一层之间的节点是无连接的,因为输入和输出是独立的,所以这种普通的神经网络对于序列数据的处理是无能为力的。而现实中,绝大多数的数据都是序列数据,比如音频、视频、文本等,都存在时间线,想要挖掘数据中的序列信息和语义信息,就需要神经网有更加特殊的结构,比如对于序列信息每一时刻的信息记忆能力。因此,RNN(Recurrent Neural Network)循环神经网络就应运而生,RNN循环神经网络相对于普通的全连接神经网络,其隐藏层多了一个信息记忆功能,即每一时刻隐藏层的输入不仅是输入层的输出,还包含上一时刻隐藏层的输出。所以,输出层每一时刻的输出都会考虑序列数据之前的信息。RNN在自然语言处理、图片描述、语音识别等领域有着广泛的应用。
RNN的网络结构及前向传播
这里写图片描述
  RNN的网络结构按时间展开如上图所示,其中x表示输入层、o表示输出层、s表示隐藏层,U、V、W表示权重参数。
  以t时刻为例,隐藏层st的输入除了当前时刻输入层的输出xt,还包含上一时刻隐藏层的输出状态st-1。RNN中隐藏层可以完成对信息的记忆,理论上RNN每一时刻的隐藏层都可以完成对上一时刻信息的记忆,也就是说在理论上RNN的隐藏层可以对信息无限记忆,处理任意长度的序列数据,但是在实际中会存在梯度消失或者梯度爆炸的问题,因此,在RNN中隐藏层st完成的只是信息的短时记忆。
RNN中前向传播过程可以用如下公式表示:
这里写图片描述
  式子1中,ot表示t时刻输出层的输出,g()表示输出层中神经元的激活函数,V表示t时刻隐藏层输出到输出层对应的权重参数;
  式子2中,st表示隐藏层t时刻的输出,f()表示隐藏层中神经元的激活函数,xt表示t时刻输入层的输出,st-1表示上一时刻隐藏层的输出,U表示输入层到隐藏层对应的权重参数,W表示上一时刻隐藏层输出到t时刻隐藏层的权重参数;
  从上面的公式可以看出,RNN循环神经网络与普通的全连接神经网络相比,隐藏层多了一个权重矩阵W。
  如果把式子2反复带入式子1中,可以得到:
这里写图片描述
  从上面的结果可以看到,RNN中每一时刻的输出ot都是受前面历次输入xt、xt-1、xt-2……影响的,这也就是为什么说RNN可以处理序列数据的原因。
RNN参数计算
  RNN中隐藏层参数(包括权重参数、偏置项)
     隐藏层参数 =(h + x)* h + h
  其中,h是隐藏层输出的状态向量的维度(该维度和隐藏层神经元个数一致),x是输入层的输出向量维度,(h + x)* h 是权重参数,h是隐藏层中偏置项个数。
RNN长期依赖
  RNN的训练过程和全连接神经网络一样,都是采用反向传播算法通过计算梯度来更新参数。但是在RNN训练过程中会存在长期依赖问题,这是由于RNN在训练时会遇到梯度消失或者梯度爆炸,所谓梯度消失和梯度爆炸是指在训练时计算和反向传播时,梯度在每一时刻都是倾向于

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值