**RNN(Recurrent Neural Network)
在传统的全连接神经网络中,从输入层到隐藏层再到输出层,每一层之间的节点是无连接的,因为输入和输出是独立的,所以这种普通的神经网络对于序列数据的处理是无能为力的。而现实中,绝大多数的数据都是序列数据,比如音频、视频、文本等,都存在时间线,想要挖掘数据中的序列信息和语义信息,就需要神经网有更加特殊的结构,比如对于序列信息每一时刻的信息记忆能力。因此,RNN(Recurrent Neural Network)循环神经网络就应运而生,RNN循环神经网络相对于普通的全连接神经网络,其隐藏层多了一个信息记忆功能,即每一时刻隐藏层的输入不仅是输入层的输出,还包含上一时刻隐藏层的输出。所以,输出层每一时刻的输出都会考虑序列数据之前的信息。RNN在自然语言处理、图片描述、语音识别等领域有着广泛的应用。
RNN的网络结构及前向传播
RNN的网络结构按时间展开如上图所示,其中x表示输入层、o表示输出层、s表示隐藏层,U、V、W表示权重参数。
以t时刻为例,隐藏层st的输入除了当前时刻输入层的输出xt,还包含上一时刻隐藏层的输出状态st-1。RNN中隐藏层可以完成对信息的记忆,理论上RNN每一时刻的隐藏层都可以完成对上一时刻信息的记忆,也就是说在理论上RNN的隐藏层可以对信息无限记忆,处理任意长度的序列数据,但是在实际中会存在梯度消失或者梯度爆炸的问题,因此,在RNN中隐藏层st完成的只是信息的短时记忆。
RNN中前向传播过程可以用如下公式表示:
式子1中,ot表示t时刻输出层的输出,g()表示输出层中神经元的激活函数,V表示t时刻隐藏层输出到输出层对应的权重参数;
式子2中,st表示隐藏层t时刻的输出,f()表示隐藏层中神经元的激活函数,xt表示t时刻输入层的输出,st-1表示上一时刻隐藏层的输出,U表示输入层到隐藏层对应的权重参数,W表示上一时刻隐藏层输出到t时刻隐藏层的权重参数;
从上面的公式可以看出,RNN循环神经网络与普通的全连接神经网络相比,隐藏层多了一个权重矩阵W。
如果把式子2反复带入式子1中,可以得到:
从上面的结果可以看到,RNN中每一时刻的输出ot都是受前面历次输入xt、xt-1、xt-2……影响的,这也就是为什么说RNN可以处理序列数据的原因。
RNN参数计算
RNN中隐藏层参数(包括权重参数、偏置项)
隐藏层参数 =(h + x)* h + h
其中,h是隐藏层输出的状态向量的维度(该维度和隐藏层神经元个数一致),x是输入层的输出向量维度,(h + x)* h 是权重参数,h是隐藏层中偏置项个数。
RNN长期依赖
RNN的训练过程和全连接神经网络一样,都是采用反向传播算法通过计算梯度来更新参数。但是在RNN训练过程中会存在长期依赖问题,这是由于RNN在训练时会遇到梯度消失或者梯度爆炸,所谓梯度消失和梯度爆炸是指在训练时计算和反向传播时,梯度在每一时刻都是倾向于
RNN(Recurrent Neural Network)循环神经网络
最新推荐文章于 2024-06-16 18:20:04 发布
本文介绍了RNN(循环神经网络)的基本原理,包括其网络结构、前向传播过程、参数计算和长期依赖问题。RNN在处理序列数据时能够记忆信息,但在长序列中可能面临梯度消失或爆炸的问题。此外,还提到了双向循环神经网络和深层循环神经网络以增强模型表达能力。最后,通过Keras展示了RNN在影评情感分类中的实战应用。
摘要由CSDN通过智能技术生成