使用GAN+RL来进行关键词生成

本文介绍了首个利用条件GAN在科学文章中生成关键词的方法,着重于解决absent关键词生成问题。研究者通过对比摘要生成模型,展示了GAN在区分机器生成和人工评估上的能力。模型包括双向GRU编码器和单向GRU解码器的猫序列模型,以及利用注意力机制的鉴别器。实验结果显示GAN在生成缺失的关键词上表现出显著优势。
摘要由CSDN通过智能技术生成

题目: Keyphrase Generation for Scientific Articles Using GANs (Student Abstract)
网址:https://www.aclweb.org/anthology/2020.emnlp-main.645.pdf
https://ojs.aaai.org//index.php/AAAI/article/view/7238
代码地址:https://github.com/avinsit123/keyphrase-gan
上面这两个网址的论文其实都是指的这篇文章,不过如果想要详细了解还是看emnlp那篇吧,毕竟篇幅较长,
前沿: 文章不长,分析也不是足够多,主要是在关键词生成领域第一个使用GAN来进行关键词生成的,文章中称主要贡献点应该在absent上面,也就是说GAN网络对于absent的关键词生成有较大帮助,但是对于present kp效果一般。

摘要:
使用条件GAN来进行关键词生成任务,GAN任务能够基于title和摘要去进行关键词生成,区别器能够区别机器生成和人为评定。

介绍: 作者其实是拿摘要生成领域的模型和关键词领域的模型做对比,然后去进行对比,哎,我当时怎么没想到呢?

模型介绍:
Generator
catSeq模型,使用encoder-decoder架构,其实编码器部分使用双向GRU,译码器部分使用单向GRU,其中应用copy机制,增加attention。
Discriminator
对原文本进行编码,然后对关键词进行编码,利用Luong的attention网络实现用关键词作为q得到的c,然后回得到一个concat向量
然后经过一个双向GRU,取最后状态向量进行做二分类任务。
在这里插入图片描述

GAN train
首先利用true sample 训练生成器,然后利用生成器生成的KP和true KP去一起训练Discriminator。
然后固定Discriminator的参数去利用策略策略梯度强化学习方式更新Generation的生成。

results:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值