题目: Keyphrase Generation for Scientific Articles Using GANs (Student Abstract)
网址:https://www.aclweb.org/anthology/2020.emnlp-main.645.pdf
https://ojs.aaai.org//index.php/AAAI/article/view/7238
代码地址:https://github.com/avinsit123/keyphrase-gan
上面这两个网址的论文其实都是指的这篇文章,不过如果想要详细了解还是看emnlp那篇吧,毕竟篇幅较长,
前沿: 文章不长,分析也不是足够多,主要是在关键词生成领域第一个使用GAN来进行关键词生成的,文章中称主要贡献点应该在absent上面,也就是说GAN网络对于absent的关键词生成有较大帮助,但是对于present kp效果一般。
摘要:
使用条件GAN来进行关键词生成任务,GAN任务能够基于title和摘要去进行关键词生成,区别器能够区别机器生成和人为评定。
介绍: 作者其实是拿摘要生成领域的模型和关键词领域的模型做对比,然后去进行对比,哎,我当时怎么没想到呢?
模型介绍:
Generator
catSeq模型,使用encoder-decoder架构,其实编码器部分使用双向GRU,译码器部分使用单向GRU,其中应用copy机制,增加attention。
Discriminator
对原文本进行编码,然后对关键词进行编码,利用Luong的attention网络实现用关键词作为q得到的c,然后回得到一个concat向量
然后经过一个双向GRU,取最后状态向量进行做二分类任务。
GAN train
首先利用true sample 训练生成器,然后利用生成器生成的KP和true KP去一起训练Discriminator。
然后固定Discriminator的参数去利用策略策略梯度强化学习方式更新Generation的生成。
results: