Numpy概率分布函数

总表

np.random中提供了一系列的分布函数,用以生成符合某种分布的随机数。下表中,如未作特殊说明,均有一个size参数,用以描述生成数组的尺寸。

这些分布函数会频繁的使用 Γ \Gamma Γ函数,其定义为

Γ ( x ) = ∫ 0 − ∞ t x − 1 d − t d t \Gamma(x)=\int_0^{-\infty}t^{x-1}d^{-t}\text dt Γ(x)=0tx1dtdt

x x x为整数时, Γ ( x ) = x ! \Gamma(x)=x! Γ(x)=x!

符号 ( n N ) \binom{n}{N} (Nn)为组合符号,用 Γ \Gamma Γ函数表示为

( n N ) = Γ ( N ) Γ ( N − n ) Γ ( n ) \binom{n}{N}=\frac{\Gamma(N)}{\Gamma(N-n)\Gamma(n)} (Nn)=Γ(Nn)Γ(n)Γ(N)

函数概率密度函数(PDF)备注
binomial(n, p) p ( N ) = ( n N ) p N ( 1 − p ) n − N p(N) = \binom{n}{N}p^N(1-p)^{n-N} p(N)=(Nn)pN(1p)nN二项分布
multinomial(n, pvals)多项分布
geometric§ f ( n ) = ( 1 − p ) n − 1 p f(n)=(1-p)^{n-1}p f(n)=(1p)n1p几何分布
negative_binomial(n, p) p ( N ) = Γ ( N + n ) N ! Γ ( n ) p n ( 1 − p ) N p(N)=\frac{\Gamma(N+n)}{N!\Gamma(n)}p^n(1-p)^N p(N)=N!Γ(n)Γ(N+n)pn(1p)N负二项分布
poisson([lam]) f ( k ) = λ k e − λ k ! f(k)=\frac{\lambda^ke^{-\lambda}}{k!} f(k)=k!λkeλ泊松分布
logseries§ p ( k ) = − p k k ln ⁡ ( 1 − p ) p(k)=\frac{-p^k}{k\ln(1-p)} p(k)=kln(1p)pk对数级数分布
gamma(shape[, scale]) p ( x ) = x k − 1 e − x / θ θ k Γ ( k ) p(x)=x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)} p(x)=xk1θkΓ(k)ex/θ伽马分布
beta(a, b) Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 − x ) b − 1 \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1} Γ(a)Γ(b)Γ(a+b)xa1(1x)b1贝塔分布
dirichlet(alpha) p ( x ) = ∏ i = 1 k x i α i − 1 p(x)=\prod_{i=1}^kx_i^{\alpha_i-1} p(x)=i=1kxiαi1狄利克雷分布
logistic([loc, scale]) p ( x ) = ( x − μ ) / s s ( 1 + exp ⁡ [ − ( x − μ ) / s ] ) 2 p(x)=\frac{(x-\mu)/s}{s(1+\exp[-(x-\mu)/s])^2} p(x)=s(1+exp[(xμ)/s])2(xμ)/sLogistic分布
triangular(L, M, R)三角形分布
uniform([low, high]) p ( x ) = 1 b − a p(x)=\frac{1}{b-a} p(x)=ba1均匀分布
vonmises(mu, kappa) p ( x ) = exp ⁡ [ κ ( x − μ ) ] 2 π I 0 ( κ ) p(x)=\frac{\exp[{\kappa(x-\mu)}]}{2\pi I_0(\kappa)} p(x)=2πI0(κ)exp[κ(xμ)]von Mises分布
zipf(a) p ( k ) = k − a ζ ( a ) p(k)=\frac{k^{-a}}{\zeta(a)} p(k)=ζ(a)ka齐普夫分布
pareto(a) p ( x ) = m a x a p(x)=\frac{m^a}{x^{a}} p(x)=xama帕累托分布
power(a) p ( x ) = a x a − 1 p(x)=ax^{a-1} p(x)=axa1幂分布
gumbel([loc, scale]) exp ⁡ [ − z − e − z ] , z = x − μ λ \exp[{-z-e^{-z}}], z=\frac{x-\mu}{\lambda} exp[zez],z=λxμ耿贝尔分布
chisquare(df) ( 1 / 2 ) k / 2 Γ ( k / 2 ) x k / 2 − 1 e − x / 2 \frac{(1/2)^{k/2}}{\Gamma(k/2)}x^{k/2-1}e^{-x/2} Γ(k/2)(1/2)k/2xk/21ex/2卡方分布
f(dfnum, dfden)F分布
noncentral_chisquare非中心卡方分布
noncentral_f非中心F分布
hypergeometric p ( x ) = ( g x ) ( b n − x ) ( g + b n ) p(x)=\frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}} p(x)=(ng+b)(xg)(nxb)超几何分布

loc一般在函数中为 μ \mu μ, scale λ \lambda λ k k k等。

I 0 I_0 I0为0阶Bessel函数。

上表中,有一些概率密度表达式过于复杂,故而未列入表中。

首先,numpy提供了五种标准分布

概率密度表达式
standard_cauchy()标准柯西分布 P ( x ) = 1 π ( 1 + x 2 ) P(x)=\frac{1}{\pi(1+x^2)} P(x)=π(1+x2)1
standard_exponential()标准指数分布 P ( x ) = e − x P(x)=e^{-x} P(x)=ex
standard_gamma(k)标准伽马分布 P ( x ) = x k − 1 e − x Γ ( k ) P(x)=x^{k-1}\frac{e^{-x}}{\Gamma(k)} P(x)=xk1Γ(k)ex
standard_normal()标准正态分布 P ( x ) = e − x 2 P(x) = e^{-x^2} P(x)=ex2
standard_t(df)标准学生分布

详情可见Numpy中提供的五种标准随机分布详解

均匀分布和三角分布

所谓均匀分布,就是在事件空间中,所有事件的概率都是相等的连续分布,是最简单的分布函数,在 ( a , b ) (a,b) (a,b)区间内,所有点差不多构成了一个矩形,所以均匀分布也叫矩形分布;和矩形分布相似,概率密度函数为三角形的分布,就是三角形分布。

Python均匀分布和三角形分布

幂分布

幂分布的形式是非常简单的,其概率密度函数为 p ( x ) = a x a − 1 p(x)=ax^{a-1} p(x)=axa1,在Python中,除了幂分布之外,还提供了另外两种幂分布,记帕累托分布和奇普夫分布。

帕累托在1906年提出了有关意大利社会财富分配的分配规律,即20%的人口掌握了80%的财富,这个规律后来被发现十分普遍,以至于约瑟夫·朱兰后来将其称为帕累托法则,也被成为八二法则。

美国学者Zipf在研究词频的时候发现,如果统计一篇较长文章中的词频,并将词频按照高低从前向后依次排列,将频次最高的词记为1、次高的词记为2,依次类推,最后使用频率最低的词为N。若用f表示频次,r表示等级序号,则fr是常数,此即Zipf定律。

Python幂分布

与正态分布相关的分布

正态分布,最早由棣莫弗在二项分布的渐近公式中得到,而真正奠定正态分布地位的,却是高斯对测量误差的研究。测量是人类与自然界交互中必不可少的环节,测量误差的普遍性,确立了正态分布作用范围的广泛性,或许正因如此,正态分布才又被称为Gauss分布。

Python生成正态分布的随机数

k k k个互相独立的随机变量 ξ 1 , ξ 2 , ⋯   , ξ k \xi_1, \xi_2,\cdots,\xi_k ξ1,ξ2,,ξk,均服从标准正态分布,则这k个随机变量的平方和构成一个新变量,新变量服从 χ 2 \chi^2 χ2分布。

Python卡方分布

与Gamma相关的分布

在我的印象中,二项分布貌似是高中学到的第一个分布,就算不是第一个,也是第一批。所以从理解上来说是不存在困难的,在 N N N次独立重复的伯努利试验中,设A在每次实验中发生的概率均为 p p p。则 N N N次试验后A发生 k k k次的概率分布,就是二项分布。

从二项分布到泊松分布

多项分布是对二项分布的一个自然的推广。

二项分布最常见的案例就是投硬币,那么投掷硬币可能有两个结果产生,所以谓之二项;如果把硬币改成骰子,由于骰子有6个面,相当于每次对应六个可能发生的结果,从而可以谓之六项分布。总而言之,把一个总体按照某种属性分成有限个类的时候,就会涉及到多项分布

Python生成多项分布随机数


Poisson分布指的是,单个事件在某一刻发生的概率。Gamma分布更进一步,指的是某个事件在某个时刻发生第 n n n次的概率。

【Python】Gamma分布详解

投硬币,硬币是正还是反,这属于两点分布的问题。

疯狂投硬币,正面出现的次数,服从二项分布

二项分布中,若特定时间内的伯努利试验次数趋于无穷大,那么在某一时刻发生某事件的概率,服从泊松分布

在某一时刻,发生第N次事件,其概率服从 Γ \Gamma Γ分布。

回到抛硬币的问题,如果硬币出现正反的概率是未知的,考虑到时间地点重力等因素的不同,硬币出现正面的概率甚至可能是不稳定的,换言之,硬币出现正面的概率,或许也是服从某种分布的,此即Beta分布

【Python】Beta分布详解

极值分布

X 1 , X 2 … , X n X_1,X_2\dots,X_n X1,X2,Xn为从总体 F F F中抽出的独立同分布样本,且

M = max ⁡ ( X 1 , … , X n ) , m = min ⁡ ( X 1 , … , X n ) M=\max(X_1,\dots,X_n), m=\min(X_1,\dots,X_n) M=max(X1,,Xn),m=min(X1,,Xn)

若存在 C n > 0 C_n>0 Cn>0 D n D_n Dn,使得 C n M + D n C_nM+D_n CnM+Dn按分布收敛于 G ( x ) G(x) G(x),则此 G ( x ) G(x) G(x)为极大值分布,同理可定义极小值分布。Fisher和Tippett证明了极值分布只有三种形式,分别是

I型 G 1 ( x ) = exp ⁡ ( − e − x ) G_1(x)=\exp(-e^{-x}) G1(x)=exp(ex)Gumbel分布
II型 G 2 ( x ) = exp ⁡ ( − x − α ) , x > 0 , α > 0 G_2(x)=\exp(-x^{-\alpha}), x>0, \alpha>0 G2(x)=exp(xα),x>0,α>0Fréchet分布
III型 G 3 ( x ) = exp ⁡ ( − ( − x ) α ) , x < 0 , α > 0 G_3(x)=\exp(-(-x)^\alpha), x<0, \alpha>0 G3(x)=exp((x)α),x<0,α>0Weibull分布

Numpy中的Gumbel分布和Logistic分布

Python威布尔分布

  • 5
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、 两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、 均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2) 3.2.2 二项分布 超几何分布概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0<p<1 x=0,1,……,n X的期望 E(X)=np X的方差 D(X)=np(1-p) 3.2.3 泊松分布 泊松分布比二项分布更重要。我们从产品受冲击(指瞬时高电压、高环境应力、高负载应力等)而失效的事实引入泊松分布。假设产品只有经过一定的冲击次数后,产品才失效,又设这些冲击满足三个条件: (1)、两个不相重叠的时间间隔内产品所受冲击次数相互独立; (2)、在充分小的时间间隔内发生两次或更多次冲击的机会可忽略不计; (3)、在单位时间内发生冲击的平均次数λ(λ>0)不随时间变化,即在时间间隔Δt 内平均发生λΔt 次冲击,它和 Δt 的起点无关。 则在[0,t]时间内发生冲击的次数X服从泊松分布,其分布概率为: X的期望 E(X)=λt X的方差 D(X)=λt 假设仪表受到n次冲击即发生故障,则仪表在[0,t]时间内的可靠度为: 其中:x =0,1,2,……,λ>0,t>0。 3.2.4 x2分布分布是可靠性工程中最常用的分布之一,虽然其概率密度形式较复杂,但可由标准正态分布推出。 设有v个相互独立的随机变量X1,X2,…… Xv,它们服从于标准正态分布N(0,1)。记x2 =X12 + X22 +…Xv2 ,x2读作“卡方”则x2服从的分布称为x2分布。它的概率密度函数为: 该式称为随机变量x2服从自由度为V的x分布。 式中:V—为自由度,是个自然数 x2分布最重要的性质是: 当m为整数时: 3.3 产品的寿命分布 3.3.1 指数分布 指数分布是电子产品在可靠性工程学中最重要的分布。通常情况下,电子产品在剔除了早期故障后,到发生元器件或材料的老化变质之前的随机失效阶段其寿命服从指数分布规律。 指数分布是唯一的失效率不随时间变化而变化的连续随机变量的概率分布。容易推出: 指数分布有如下三个特点: 1. 平均寿命和失效率互为倒数; MTBF=1/λ 2. 特征寿命就是平均寿命; 3. 指数分布具有无记忆性。(即产品以前的工作时间对以后的可能工作时间没有影响) 3.3.2 威布尔分布 从上面的描述可知,指数分布只适用于浴盆曲线的底部,但任何产品都有早期故障,也总有耗损失效期。在可靠性工程学中用威布尔分布来描述产品在整个寿命期的分布情况。 将指数分布中的(-λt)替换为(-(t/η)m),就得到威布尔分布。容易得到: 3.3.3 正态分布与对数正态分布 正态分布又称为常态分布或高斯分布。它的概率密度函数为: 式中:-∞<x<∞ 分布函数记为: 对数正态分布是指:若寿命T的对数lnT服从正态分布N(u,σ),则T服从对数正态分布。它的概率密度函数为: 式中:t,σ为正数,μ和σ分别称为对数正态分布的“对数均值”和“对数标准差”。 3.4 为进行统计推断所构造的分布 3.4.1 t分布(学生氏分布) t—分布常用于区间估计、正态总体的假设检验以及机械概率设计之中。服从t—分布的随机变量记住t。它是服从标准正态分布N(0,1)的随机变量U和服从自由度为v的x2分布的随机变量x2(v)的函数。 它的概率密度函数f(t)为: 3.4.2 F—分布 F分布主要用于两个总体的假设检验与方差分析。服从F分布的随机变量F是两个相互独立的x2分布随机变量x2(v1)和x2(v2)的函数: 式中:F只能取正值。F分布概率密度函数为: 另外还有β—分布等。 中位秩是β—分布的中位数,一般用下式求出: 中位秩值≈(i-0.3)/(n+0.4) 式中:n为样本总数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值