用ImageJ处理高斯光束的光斑

本文介绍了如何使用Python、R语言、Julia等工具以及ImageJ软件处理高斯光束图像,包括图像转换、伪彩显示、强度图绘制、区域裁剪和高斯拟合的过程,给出了具体的步骤和参数结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用不同的语言和工具处理高斯光束:
PythonR语言JuliaMathemeticaC#Excel+VBAImageJOctave

图像显示

ImageJ是著名的科研图像处理工具,提供了非常强大的分析功能,处理光斑图像简直是小菜一碟。这里推荐下载fiji,是内置了大量插件的ImageJ,可以满足各种科研上的图像处理需求。

打开一张光斑图像,如果是RGB格式的,那么点击菜单栏Image->Type->8-bit,将其转换为灰度图。然后点击菜单栏Analyze->Tools->Calibration Bar,为其添加色条,从而建立颜色和强度的一一对应关系。

考虑到灰度图的表现力较弱,点击工具栏的LUT,选择Physics,然后重新为其添加色条,即可得到伪彩图像。

为了更加直观地显示其强度,点击菜单栏Analyze->3d Surface Plot,在弹出窗口中,将类型转换为Mesh,得到其强度图,如下右图所示

在这里插入图片描述

图像裁剪

由于我们要分析的光斑仅占图像很小的一部分,为了便于后续分析,需要将刚兴趣的区域截取出来,点击工具栏的框选工具,将光斑所在位置截取出来,这回再去查看其三维图像,即可得到右图。(这里调整了Smoothing参数,相当于做了滤波)。

在这里插入图片描述

高斯拟合

光斑分析的最终目的,就是对光斑的强度数据进行高斯拟合,为此需要从二维的光斑数据中抽取出一列数据,用于数据拟合。

按下快捷键Ctrl+K,或者菜单栏Analyze->Plot Profile,就可以得到一个曲线窗口。这个曲线的横坐标即我们框选区域的横向的像素编号,纵坐标则是我们框选区域的灰度在y轴方向的平均值。选中Live,则随着框选位置发生变化,曲线也跟着发生变化

在这里插入图片描述

接下来,点击菜单栏Analyze->Tools->Curve Fitting,弹出曲线拟合的设置窗口Curve Fitter。将其默认的拟合数据删除,然后回到曲线窗口,点击Data->Copy 1st Data Set,然后回到拟合设置窗口,按下Ctrl+V,粘贴将刚刚复制的数据。

接下来,在拟合设置窗口的下拉框中,选择Gaussian,然后点击Fit,就会弹出两个新的窗口,一个是拟合参数,另一个是拟合的可视化结果。

在这里插入图片描述

图像窗口上方给出了拟合方程

y = a + ( b − a ) e − ( x − c ) 2 2 d 2 y=a+(b-a)e^{\frac{-(x-c)^2}{2d^2}} y=a+(ba)e2d2(xc)2

其中参数值分别为

a = 3.09323 b = 31.17799 c = 39.50275 d = 13.29209 \begin{aligned} a &= 3.09323\\ b &= 31.17799\\ c &= 39.50275\\ d &= 13.29209\\ \end{aligned} abcd=3.09323=31.17799=39.50275=13.29209

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值