基于MACE深度学习框架的落地实践(笔记)

一、为什么要把模型放到移动端
1、用户体验:可用性较高
2、成本:服务器成本较高
3、用户隐私:如语音、视频

二、AI模型开发部署流程

在服务端通过GPU集群的方式进行模型训练,然后把训练好的模型通过模型文件的方式导出,做一些格式转换,再通过移动端深度学习框架部署在移动端智能设备上

三、基于mace的落地实践
1、硬件选型
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、框架适配
在这里插入图片描述
在这里插入图片描述
通过ONNX格式在这里插入图片描述

3、性能优化
在这里插入图片描述
在这里插入图片描述
优化瓶颈:如卷积计算,在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
优势:存储量表变少,访存带宽减少
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
访存量会增加
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4、工程部署在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
五、趋势和展望
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值