前端推理框架笔记

本文介绍了多个前端推理框架,如NCNN、MNN、Paddle-Lite、TensorFlow Lite、MACE和TensorRT,详细阐述了它们的特性和优化,包括硬件加速、功耗管理和模型保护。在实际部署时,选择框架应根据设备硬件和项目需求来决定。
摘要由CSDN通过智能技术生成

参考:https://blog.csdn.net/lixuejun2008/article/details/103897626

1) NCNN(腾讯)

ncnn加速不同于模型量化压缩, 而是采用另一种加速技巧,包括下面的几种:

使用低精度
采用openmp多线程加速
采用simd指令集

别的资料:

https://www.zhihu.com/question/62871439?sort=created

已实现 winograd 卷积加速,int8 压缩和推断,还有基于 vulkan 的 gpu 推断

而且针对不同kernel size做了优化

2. 默认的反卷积实现好像有点问题,出来的数据在kernel size 3, step 2时不对。我是自己重新实现了,也不麻烦,用自带的1x1卷积加自己写的neon优化版col2im。

 

2) MNN(阿里)

MNN 是一个轻量级的深度学习端侧推理引擎,核心解决深度神经网络模型在端侧推理运行问题,涵盖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值