参考:https://blog.csdn.net/lixuejun2008/article/details/103897626
1) NCNN(腾讯)
ncnn加速不同于模型量化压缩, 而是采用另一种加速技巧,包括下面的几种:
使用低精度
采用openmp多线程加速
采用simd指令集
别的资料:
https://www.zhihu.com/question/62871439?sort=created
已实现 winograd 卷积加速,int8 压缩和推断,还有基于 vulkan 的 gpu 推断
而且针对不同kernel size做了优化
2. 默认的反卷积实现好像有点问题,出来的数据在kernel size 3, step 2时不对。我是自己重新实现了,也不麻烦,用自带的1x1卷积加自己写的neon优化版col2im。
2) MNN(阿里)
MNN 是一个轻量级的深度学习端侧推理引擎,核心解决深度神经网络模型在端侧推理运行问题,涵盖