一、卷积神经网络介绍:
卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。
卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。CNN最早由Yann LeCun提出并应用在手写字体识别上(MINST)。LeCun提出的网络称为LeNet,其网络结构如下:
这是一个最典型的卷积网络,由卷积层(conv)、池化层(pooling)、全连接层(FC)组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。
卷积层完成的操作,可以认为是受局部感知的启发,而池化层,主要是为了降低数据维度。
综合起来说,CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。
二、卷积神经网络细节:
1.Filter的产生及作用
假设输入的图片格式是32*32*3,过滤器(Filter)的大小为5*5*3,需要注意原始输入数据和过滤器的深度一