cs231n-有关CNN的介绍、细节

本文详细介绍了卷积神经网络(CNN)的基本概念和工作原理,包括Filter的作用和特性,输入层与Filter、填充层、步长以及输出层的关系,Poolng过程以及全连接层的作用。通过对CNN的深入探讨,帮助读者理解其在图像处理中的强大能力。
摘要由CSDN通过智能技术生成

一、卷积神经网络介绍:


卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。

卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。CNN最早由Yann LeCun提出并应用在手写字体识别上(MINST)。LeCun提出的网络称为LeNet,其网络结构如下:




这是一个最典型的卷积网络,由卷积层(conv)、池化层(pooling)、全连接层(FC)组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

卷积层完成的操作,可以认为是受局部感知的启发,而池化层,主要是为了降低数据维度。

综合起来说,CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。


二、卷积神经网络细节:

1.Filter的产生及作用

 假设输入的图片格式是32*32*3,过滤器(Filter)的大小为5*5*3,需要注意原始输入数据和过滤器的深度一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值