【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
一、前言
在自然语言处理(NLP)领域,Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如 GPT 系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。
二、定义&特点
1. Zero-shot 学习
定义
Zero-shot 学习指模型仅通过任务描述(Task Description)理解任务,并在没有任何示例的情况下预测输出结果。它完全依赖于预训练阶段中学习到的通用知识,不需要针对具体任务的额外数据。
特点
-
无示例:模型仅通过任务描述执行推理。
-
广泛适用:适合没有标注数据的新任务。
-
性能受限:对复杂任务的预测准确率较低。
示例
Task Description: Translate English to French:
Prompt: cheese => ?
输出:模型根据上下文知识输出 “fromage”。
2. One-shot 学习
定义
One-shot 学习是在任务描述的基础上,提供一个输入输出示例,模型通过示例掌握任务模式,但不对模型权重进行更新。
特点
-
任务描述 + 单示例:增加了对任务的初步指导。
-
无梯度更新:仅依赖示例推理,无需训练。
示例
Task Description: Translate English to French:
Example: sea otter => loutre de mer
Prompt: cheese => ?
输出:模型根据单个示例输出 “fromage”。
3. Few-shot 学习
定义
Few-shot 学习是在任务描述的基础上,提供多个输入输出示例,通过示例展示任务的模式和多样性,模型依此进行推理。
特点
-
任务描述 + 多示例:示例越多,模型对任务的理解越全面。
-
无梯度更新:无需权重调整,直接推理。
示例
Task Description: Translate English to French:
Examples:
- sea otter => loutre de mer
- peppermint => menthe poivrée
- plush giraffe => girafe peluche
Prompt: cheese => ?
输出:模型根据多个示例输出 “fromage”。
三、总结对比:Zero-shot、One-shot、Few-shot
类别 | 特点 | 优点 | 缺点 |
---|---|---|---|
Zero-shot | 无示例,仅任务描述预测 | 不需要额外训练数据,能快速验证模型在新任务上的能力 | 对任务复杂度较高的问题效果有限,缺乏示例指导,易受语言模态间知识缺失的影响 |
One-shot | 单个示例辅助预测 | 单个示例可以显著提升简单任务的准确性,高效、便捷,适合资源有限的任务 | 对于复杂任务,单个示例可能不足以揭示模式,示例质量对预测结果影响较大 |
Few-shot | 多个示例辅助预测 | 更高的准确性,适合任务模式较复杂的场景,提供示例覆盖任务模式后,泛化能力较强 | 对示例的数量和质量要求较高,示例不足或模式不清晰时效果会受限 |
四、应用场景
Zero-shot 应用
机器翻译:适用于低资源语言对的翻译任务。
情感分析:快速判断新领域文本的情感倾向。
知识问答:无标注数据的问答场景。
One-shot 应用
命名实体识别(NER):给定一个示例帮助模型识别特定领域的实体。
意图分类:用一个示例指导模型理解新的意图类型。
Few-shot 应用
生成任务:如多语言文本摘要,提供多示例提升模型质量。
多分类任务:在领域特定数据不足时,用少量标注数据训练和测试。