【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!

一、前言

在自然语言处理(NLP)领域,Zero-shot、One-shot 和 Few-shot 学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如 GPT 系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。

二、定义&特点

1. Zero-shot 学习

定义

Zero-shot 学习指模型仅通过任务描述(Task Description)理解任务,并在没有任何示例的情况下预测输出结果。它完全依赖于预训练阶段中学习到的通用知识,不需要针对具体任务的额外数据。

特点

  • 无示例:模型仅通过任务描述执行推理。

  • 广泛适用:适合没有标注数据的新任务。

  • 性能受限:对复杂任务的预测准确率较低。

示例

Task Description: Translate English to French:  
Prompt: cheese => ?

输出:模型根据上下文知识输出 “fromage”。

2. One-shot 学习

定义

One-shot 学习是在任务描述的基础上,提供一个输入输出示例,模型通过示例掌握任务模式,但不对模型权重进行更新。

特点

  • 任务描述 + 单示例:增加了对任务的初步指导。

  • 无梯度更新:仅依赖示例推理,无需训练。

示例

Task Description: Translate English to French:  
Example: sea otter => loutre de mer  
Prompt: cheese => ?

输出:模型根据单个示例输出 “fromage”。

3. Few-shot 学习

定义

Few-shot 学习是在任务描述的基础上,提供多个输入输出示例,通过示例展示任务的模式和多样性,模型依此进行推理。

特点

  • 任务描述 + 多示例:示例越多,模型对任务的理解越全面。

  • 无梯度更新:无需权重调整,直接推理。

示例

Task Description: Translate English to French:  
Examples:
- sea otter => loutre de mer  
- peppermint => menthe poivrée  
- plush giraffe => girafe peluche  
Prompt: cheese => ?

输出:模型根据多个示例输出 “fromage”。

三、总结对比:Zero-shot、One-shot、Few-shot

类别特点优点缺点
Zero-shot无示例,仅任务描述预测不需要额外训练数据,能快速验证模型在新任务上的能力对任务复杂度较高的问题效果有限,缺乏示例指导,易受语言模态间知识缺失的影响
One-shot单个示例辅助预测单个示例可以显著提升简单任务的准确性,高效、便捷,适合资源有限的任务对于复杂任务,单个示例可能不足以揭示模式,示例质量对预测结果影响较大
Few-shot多个示例辅助预测更高的准确性,适合任务模式较复杂的场景,提供示例覆盖任务模式后,泛化能力较强对示例的数量和质量要求较高,示例不足或模式不清晰时效果会受限

四、应用场景

Zero-shot 应用

机器翻译:适用于低资源语言对的翻译任务。

情感分析:快速判断新领域文本的情感倾向。

知识问答:无标注数据的问答场景。

One-shot 应用

命名实体识别(NER):给定一个示例帮助模型识别特定领域的实体。

意图分类:用一个示例指导模型理解新的意图类型。

Few-shot 应用

生成任务:如多语言文本摘要,提供多示例提升模型质量。

多分类任务:在领域特定数据不足时,用少量标注数据训练和测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

初夏0811

你的鼓励将是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值