VISUALIZING MODELS, DATA, AND TRAINING WITH TENSORBOARD

A 60 Minute Blitz,我们向大家展示了如何加载数据,如何通过定义为的子类的nn.Module模型提供数据,如何在训练数据上训练该模型以及如何在测试数据上对其进行测试。为了了解发生的情况,我们在模型训练期间打印一些统计数据,以了解训练是否在进行。但是,我们可以做得更好:PyTorch与TensorBoard集成在一起,TensorBoard是一种工具,用于可视化神经网络训练运行的结果。本教程使用Fashion-MNIST数据集说明了其某些功能,该 数据集 可以使用torchvision.datasets读入PyTorch。

在本教程中,我们将学习如何:

读入数据并进行适当的转换(与先前的教程几乎相同)。

设置TensorBoard。

写入TensorBoard。

使用TensorBoard检查模型架构。

使用TensorBoard以更少的代码创建我们在上一个教程中创建的可视化的交互式版本

具体来说,在第5点,我们将看到:

检查我们训练数据的几种方法

在训练过程中如何跟踪模型的性能

训练后如何评估模型的性能。

我们将从与CIFAR-10教程类似的样板代码开始:

# imports
import matplotlib.pyplot as plt
import numpy as np
​
import torch
import torchvision
import torchvision.transforms as transforms
​
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
​
# transforms
transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))])
​
# datasets
trainset = torchvision.datasets.FashionMNIST('./data',
    download=True,
    train=True,
    transform=transform)
testset = torchvision.datasets.FashionMNIST('./data',
    download=True,
    train=False,
    transform=transform)
​
# dataloaders
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                        shuffle=True, num_workers=2)
​
​
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                        shuffle=False, num_workers=2)
​
# constant for classes
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
        'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')
​
# helper function to show an image
# (used in the `plot_classes_preds` function below)
def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

我们将在该教程中定义一个类似的模型体系结构,仅需进行少量修改即可解决以下事实:图像现在是一个通道而不是三个通道,而图像是28x28而不是32x32:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
​
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
​
​
net = Net()

我们将optimizercriterion之前定义相同:

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

 

 

1. TensorBoard setup

现在我们将设置TensorBoard,tensorboard从我们的关键对象导入torch.utils并定义它 SummaryWriter,该关键对象用于将信息写入TensorBoard。

from torch.utils.tensorboard import SummaryWriter
​
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/fashion_mnist_experiment_1')

请注意,仅此行会创建一个runs/fashion_mnist_experiment_1 文件夹。

 

2. Writing to TensorBoard

现在,让我们写一个像我们TensorBoard - specifically, a grid - using make_grid.

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
​
# create grid of images
img_grid = torchvision.utils.make_grid(images)
​
# show images
matplotlib_imshow(img_grid, one_channel=True)
​
# write to tensorboard
writer.add_image('four_fashion_mnist_images', img_grid)

运行

tensorboard --logdir=runs

从命令行,然后导航到https:// localhost:6006 应该显示以下内容。

现在大家知道如何使用TensorBoard了!但是,此示例可以在Jupyter Notebook中完成-TensorBoard真正擅长的地方是创建交互式可视化。我们将在接下来的内容中介绍其中之一,并在本教程结束时介绍更多内容。

 

3. Inspect the model using TensorBoard

TensorBoard的优势之一是其可视化复杂模型结构的能力。让我们可视化我们构建的模型。

writer.add_graph(net, images)
writer.close()

现在刷新TensorBoard后,大家应该会看到一个“ Graphs”标签,如下所示:

继续并双击“ Net”以展开它,查看构成模型的各个操作的详细视图。

TensorBoard具有非常方便的功能,接下来我们将介绍,用于可视化高维数据,例如在低维空间中的图像数据;

 

4. Adding a “Projector” to TensorBoard

我们可以通过add_embedding方法可视化高维数据的低维表示

# helper function
def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)
​
    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]
​
# select random images and their target indices
images, labels = select_n_random(trainset.data, trainset.targets)
​
# get the class labels for each image
class_labels = [classes[lab] for lab in labels]
​
# log embeddings
features = images.view(-1, 28 * 28)
writer.add_embedding(features,
                    metadata=class_labels,
                    label_img=images.unsqueeze(1))
writer.close()

现在,在TensorBoard的“投影仪”选项卡中,大家可以看到这100张图像-每个图像784维-向下投影到三维空间中。此外,这是交互式的:大家可以单击并拖动以旋转三维投影。最后,一些技巧可以使可视化效果更容易看到:选择左上方的“颜色:标签”,以及启用“夜间模式”,这将使图像更容易看到,因为它们的背景是白色的:

现在我们已经彻底inspected了我们的数据,让我们展示了TensorBoard如何从培训开始就可以使跟踪模型的培训和评估更加清晰。

 

5. Tracking model training with TensorBoard

在前面的示例中,我们仅每2000次迭代printed 一次模型的运行损失。现在,我们将运行损失记录到TensorBoard中,并通过模型查看模型所做的预测plot_classes_preds

# helper functions
​
def images_to_probs(net, images):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = net(images)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = np.squeeze(preds_tensor.numpy())
    return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]
​
​
def plot_classes_preds(net, images, labels):
    '''
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "images_to_probs" function.
    '''
    preds, probs = images_to_probs(net, images)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in np.arange(4):
        ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
        matplotlib_imshow(images[idx], one_channel=True)
        ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
            classes[preds[idx]],
            probs[idx] * 100.0,
            classes[labels[idx]]),
                    color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig

最后,让我们使用与之前教程中相同的模型训练代码来训练模型,但是每1000批将结果写入TensorBoard,而不是打印到控制台。这是使用add_scalar 函数完成的 。

此外,在训练过程中,我们将生成一幅图像,显示该批次中包含的四幅图像的模型预测与实际结果。

running_loss = 0.0
for epoch in range(1):  # loop over the dataset multiple times
​
    for i, data in enumerate(trainloader, 0):
​
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
​
        # zero the parameter gradients
        optimizer.zero_grad()
​
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
​
        running_loss += loss.item()
        if i % 1000 == 999:    # every 1000 mini-batches...
​
            # ...log the running loss
            writer.add_scalar('training loss',
                            running_loss / 1000,
                            epoch * len(trainloader) + i)
​
            # ...log a Matplotlib Figure showing the model's predictions on a
            # random mini-batch
            writer.add_figure('predictions vs. actuals',
                            plot_classes_preds(net, inputs, labels),
                            global_step=epoch * len(trainloader) + i)
            running_loss = 0.0
print('Finished Training')

现在,大家可以查看scalars 选项卡,以查看在15,000次训练迭代中绘制的运行损失:

此外,我们可以查看整个学习过程中模型在任意批次上所做的预测。查看“图像”选项卡,并在“预测与实际”可视化条件下向下滚动以查看此内容;这向我们表明,例如,仅经过3000次训练迭代,该模型就能够区分出视觉上截然不同的类,例如衬衫,运动鞋和外套,尽管它并没有像后来的训练那样confident :

在之前的教程中,我们研究了模型训练后的每类准确性;在这里,我们将使用TensorBoard绘制每个类的精确调用曲线(此处有很好的解释 )。

 

6. Assessing trained models with TensorBoard

# 1. gets the probability predictions in a test_size x num_classes Tensor
# 2. gets the preds in a test_size Tensor
# takes ~10 seconds to run
class_probs = []
class_preds = []
with torch.no_grad():
    for data in testloader:
        images, labels = data
        output = net(images)
        class_probs_batch = [F.softmax(el, dim=0) for el in output]
        _, class_preds_batch = torch.max(output, 1)
​
        class_probs.append(class_probs_batch)
        class_preds.append(class_preds_batch)
​
test_probs = torch.cat([torch.stack(batch) for batch in class_probs])
test_preds = torch.cat(class_preds)
​
# helper function
def add_pr_curve_tensorboard(class_index, test_probs, test_preds, global_step=0):
    '''
    Takes in a "class_index" from 0 to 9 and plots the corresponding
    precision-recall curve
    '''
    tensorboard_preds = test_preds == class_index
    tensorboard_probs = test_probs[:, class_index]
​
    writer.add_pr_curve(classes[class_index],
                        tensorboard_preds,
                        tensorboard_probs,
                        global_step=global_step)
    writer.close()
​
# plot all the pr curves
for i in range(len(classes)):
    add_pr_curve_tensorboard(i, test_probs, test_preds)

现在,大家将看到一个“ PR Curves”选项卡,其中包含每个类别的精确调用曲线。继续戳一下;大家会看到,在某些类别上,模型的“曲线下面积”接近100%,而在另一些类别上,该面积更低:

 

 

这是TensorBoard和PyTorch与之集成的介绍。当然,大家可以在Jupyter Notebook中完成TensorBoard所做的所有操作,但是使用TensorBoard,大家可以获得默认情况下是交互式的视觉效果。

 

接下来,给大家介绍一下租用GPU做实验的方法,我们是在智星云租用的GPU,使用体验很好。具体大家可以参考:智星云官网: http://www.ai-galaxy.cn/,淘宝店:https://shop36573300.taobao.com/公众号: 智星AI

 

       

 

 

 

 

参考文献​:

https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

https://github.com/zalandoresearch/fashion-mnist

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值