【图论】网络流算法入门(新手友好版)

这篇文章转载自https://www.cnblogs.com/ZJUT-jiangnan/p/3632525.html,对初学者很友好的一篇算法入门文章。

在原文章中给出的算法部分有不足的地方,会导致EK算法的效率极具下降,在文章最后我会提到,希望大家注意!


网络流的相关定义:

  • 源点:有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点
  • 汇点:另一个点也很特殊,只进不出,叫做汇点
  • 容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常用c[i,j]表示,流量则通常是f[i,j].

通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有“进入”他们的流量和等于所有从他本身“出去”的流量。

  • 最大流:把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流

网络流基础篇——Edmond-Karp算法


求解思路:

首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流

一个最简单的例子就是,零流,即所有的流量都是0的流。

  • (1).我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。
  • (2).那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。
  • (3).这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。
  • (4).当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。

补充:

  • (1).寻找增广路的时候我们可以简单的从源点开始做BFS,并不断修改这条路上的delta 量,直到找到源点或者找不到增广路。
  • (2).在程序实现的时候,我们通常只是用一个c 数组来记录容量,而不记录流量,当流量+delta 的时候,我们可以通过容量-delta 来实现,以方便程序的实现。

相关问题:

为什么要增加反向边?

在做增广路时可能会阻塞后面的增广路,或者说,做增广路本来是有个顺序才能找完最大流的。

但我们是任意找的,为了修正,就每次将流量加在了反向弧上,让后面的流能够进行自我调整。


举例:

比如说下面这个网络流模型

3

我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。

于是我们修改后得到了下面这个流。(图中的数字是容量)

4

这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但是,

这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢

问题就在于我们没有给程序一个“后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。

那么如何解决这个问题呢

我们利用一个叫做反向边的概念来解决这个问题。即每条边(i,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。

c[x, y] -= delta;
c[y, x] += delta;


我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下:

1

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

2

那么,这么做为什么会是对的呢?

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给“退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。

如果这里没有2-4怎么办?

这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点

同时本来在3-4上的流量由1-3-4这条路来“接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流。

 

附录:(edmonds-Karp版本)
void update(int t, int delta) {
	for (int i = t; pre[i] != -1; i = pre[i]) {
		edges[pre[i]][i] -= delta;
		edges[i][pre[i]] += delta;
	}
}

int find_path_bfs(int s, int t){
	memset(pre, -1, sizeof(pre));
	memset(vis, false, sizeof(vis));
	int min = INF;

	queue<int> q;
	vis[s] = true;
	q.push(s);

	while (!q.empty()) {
		int cur = q.front();	q.pop();
		
		if (cur == t) break;

		for (int i = 0; i < n + 2; i++) {
			if (!vis[i] && edges[cur][i]) {
				vis[i] = true;
				q.push(i);
				// 这是原文中的写法
				// min = Min(edges[pre[i]][i], min)
				pre[i] = cur;
			}
		}
	}
	if (pre[t] == -1) return 0;
	
	// 在原文给出的代码中,min求解的并不是当前bfs路径上的最小值,而是全局的最小值
	// 这样会导致在update的时候,update的并不是当前所能update的最大值
	// 进而会导致更多次数的bfs,效率下降
	for (int i = t; pre[i] != -1; i = pre[i]) {
		min = Min(edges[pre[i]][i], min);
	}

	return min;
}

int EK(int s, int t) {
	int new_flow = 0;
	int max_flow = 0;

	while (new_flow = find_path_bfs(s, t)) {
		update(t, new_flow);
		max_flow += new_flow;
	}
	
	return max_flow;
}

这里我所给出的代码是正确的,原文中的EK算法效率很低,一般的模板题都无法AC,大家需要注意(原因我已经在注释中给出)

总结

这么看起来,网络流也不是很复杂嘛!当然,这只是网络流的最大流基础而已,还有很多相关算法有待去学呀!

AC路其修远兮!

上述讲解如有问题,欢迎大家指正!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值