[DEBUG] pytorch 加速安装兼容cuda12.6版本(Torch CUDA is not available )

如何使用镜像源快速安装兼容 CUDA 12.6 的 PyTorch

在使用 PyTorch 时,有时会遇到 CUDA 版本不兼容的问题。对于 CUDA 12.6,PyTorch 目前尚未直接支持,但可以通过安装 cu118 版本来兼容。由于 PyTorch 官网下载速度较慢,我们可以利用镜像源来加速安装。

以下是详细步骤和安装命令,希望能帮助到需要解决此问题的朋友。


设置国内镜像源

首先,为了提高安装速度,建议先设置 pip 的国内镜像源:

pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple

此外,我们将使用上海交通大学 Linux 用户组提供的 PyTorch pip 镜像源。将 PyTorch 官网源 https://download.pytorch.org/whl 替换为 https://mirror.sjtu.edu.cn/pytorch-wheels


安装不同版本的 PyTorch

以下是基于 cu118cu121 的各版本 PyTorch 安装命令。根据你的需求选择合适的版本执行。

1. PyTorch 2.3.0

CUDA 11.8
pip install torch==2.3.0+cu118 torchvision==0.18.0+cu118 torchaudio==2.3.0+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html
CUDA 12.1
pip install torch==2.3.0+cu121 torchvision==0.18.0+cu121 torchaudio==2.3.0+cu121 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html

2. PyTorch 2.2.0

CUDA 11.8
pip install torch==2.2.0+cu118 torchvision==0.17.0+cu118 torchaudio==2.2.0+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html
CUDA 12.1
pip install torch==2.2.0+cu121 torchvision==0.17.0+cu121 torchaudio==2.2.0+cu121 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html

3. PyTorch 2.1.0

CUDA 11.8
pip install torch==2.1.0+cu118 torchvision==0.16.0+cu118 torchaudio==2.1.0+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html
CUDA 12.1
pip install torch==2.1.0+cu121 torchvision==0.16.0+cu121 torchaudio==2.1.0+cu121 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html

4. PyTorch 2.0.0

CUDA 11.8
pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html

总结

使用国内镜像源可以极大提升 PyTorch 安装速度,特别是在网络条件不佳的情况下。通过配置 pip 镜像和使用交大 PyTorch 镜像源,能够快速完成不同版本 PyTorch 的安装。

希望这篇文章能对你的 PyTorch 使用带来帮助!如有问题,欢迎在评论区讨论交流。

### PyTorch版本CUDA 12.6兼容性 对于寻找与特定 CUDA 版本CUDA 12.6 兼容PyTorch 版本,官方通常会在发布新版本时指定所支持的最低和最高 CUDA 版本。然而,在当前可获得的信息中,并未直接提及有哪个具体发布的 PyTorch 版本声明完全支持 CUDA 12.6[^1]。 为了确保最佳性能以及避免潜在的问题,建议遵循以下方法来确认适合 CUDA 12.6PyTorch 安装方案: - 访问 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 并查阅最新的安装指南。 - 如果找不到针对 CUDA 12.6 的预构建二进制文件,则可能需要考虑使用较新的 PyTorch 夜间版(nightly build),这些夜间构建可能会提前提供对最新 CUDA 版本的支持。 - 另外一种选择是从源码编译 PyTorch,这允许自定义配置以匹配本地环境中的 CUDA 和 cuDNN 设置[^2]。 考虑到上述情况,如果确实需要利用 CUDA 12.6 进行开发工作,可以尝试通过 Conda 渠道获取最接近需求的 PyTorch 发布版本并测试其稳定性;或者关注 PyTorch 社区动态等待官方正式推出带有明确 CUDA 12.6 支持的新版本。 ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 此命令展示了如何基于 Conda 安装具有特定 CUDA 版本支持的 PyTorch 组合包,但对于 CUDA 12.6 来说,需替换 `pytorch-cuda=11.8` 部分为对应于目标 CUDA 版本的选项(如果有)。由于目前缺乏直接支持 CUDA 12.6 的稳定发行版信息,实际操作前应先验证是否有适用于该 CUDA 版本的合适候选版本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值