EMC设计中电缆屏蔽使用方法

探讨了电缆屏蔽层接地的重要性,指出正确接地能有效防止EMI信号泄露,介绍了几种常见屏蔽层接地方法,强调避免'猪尾巴效应'以确保良好的电磁兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在EMC 设计中,电缆进行屏蔽的目的有两方面:

  1. 将注入到电缆的共模干扰电流通过屏蔽层引导到大地(接地设备)或PCB中的工作地GND(浮地设备),使屏蔽层中的信号和电缆接口电路受到保护,免受外界干扰;
  2. 将信号线中的EMI信号包围在屏蔽层内,保证电缆屏蔽层上也没有EMI共模电流。
PCB产品中电缆屏蔽

列举几种常见的电缆屏蔽层接地方法,如下所示:

在屏蔽电缆的应用中,有时为了连接方便,往往只是将屏蔽层的编织网拧成一段,即扭成“猪尾巴”状的辫子,芯线有很长一段露出屏蔽层,如下图所示,这时就会产生“猪尾巴效应”,它很大程度上降低了屏蔽层的屏蔽效果,同时,这种电缆也不能很好地抑制共模辐射。类似的,当电缆屏蔽层与金属机箱有360°完整搭接,但没有保证良好的电连续性时,也会造成同样的效果。

屏蔽电缆接头处的“猪尾巴效应”

在EMC 设计中,屏蔽电缆的屏蔽层一定要360°搭接处理,切忌使用“猪尾巴”方式搭接。

如果从风险的概念来评估电缆屏蔽层连接的设计,那么据经验,30MHz 以上的频率下,屏蔽层电缆具有零长度的“猪尾巴”,也就是没有风险,如下图所示的DB连接器在计算机产品中应用时,ESD等级可以达到15kV;

电缆屏蔽层通过连接器金属外壳360°接地

1cm长度的“猪尾巴”存在30%风险;3cm长度的“猪尾巴”存在50%风险,如下图所示的DB连接器在计算机产品中应用时,ESD等级只能达到4kV;

电缆屏蔽层通过螺钉和细长的“猪尾巴”接地

5cm长度的“猪尾巴”存在70%风险,如下图所示的DB连接器在计算机产品中应用时,ESD等级仅达2kV。

电缆屏蔽层通过芯线接地
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不脱发的程序猿

亲,赏包辣条吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值